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Abstract

We evaluate the potential of deriving fractional cover (fCover) and leaf area index (LAI) from discrete return, small footprint airborne laser
scanning (ALS) data. fCover was computed as the fraction of laser vegetation hits over the number of total laser echoes per unit area. Analogous to
the concept of contact frequency, an effective LAI proxy was estimated by a fraction of first and last echo types inside the canopy. Validation was
carried out using 83 hemispherical photographs georeferenced to centimeter accuracy by differential GPS, for which the respective gap fractions
were computed over a range of zenith angles using the Gap Light Analyzer (GLA). LAI was computed by GLA from gap fraction estimations at
zenith angles of 0–60°. For ALS data, different data trap sizes were used to compute fCover and LAI proxy, the range of radii was 2–25 m. For
fCover, a data trap size of 2 m radius was used, whereas for LAI a radius of 15 m provided best results. fCover was estimated both from first and
last echo data, with first echo data overestimating field fCover and last echo data underestimating field fCover. A multiple regression of fCover
derived from both echo types with field fCover showed no increase of R2 compared to the regression of first echo data, and thus, we only used first
echo data for fCover estimation. R2 for the fCover regression was 0.73, with an RMSE of 0.18. For the ALS LAI proxy, R2 was lower, at 0.69,
while the RMSE was 0.01. For LAI larger radii (∼15 m ) provided best results for our canopy types, which is due to the importance of a larger
range of zenith angles (0–60°) in LAI estimation from hemispherical photographs. Based on the regression results, maps of fCover and LAI were
computed for our study area and compared qualitatively to equivalent maps based on imaging spectrometry, revealing similar spatial patterns and
ranges of values.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Robust estimates of vegetation density such as fCover and
LAI are critical for a number of applications. They serve as
input parameters for biosphere modeling (Bonan, 1993) and
play an important role in fire behavior models (Finney, 1998),
since they both contain information about a number of relevant
ecological processes. LAI was first defined as the total one-
sided area of photosynthetic tissue per unit ground surface area
(Watson, 1947). This definition is only valid for broad leaf
forests though, and consequently Myneni et al. (1997) defined
the LAI as the maximum projected leaf area per unit ground
surface area. fCover is defined as the fraction of ground covered
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by vegetation over uncovered ground. Both LAI and fCover are
dimensionless parameters, even though LAI is often given as
meter square per meter square to illustrate its meaning as an area
ratio. Remote sensing has always been assigned a major role in
deriving these measures. Many approaches were focused on the
retrieval of these parameters from passive optical systems, often
by the use of regression models (Cohen et al., 2003; Colombo
et al., 2003), and in some cases by using radiative transfer
modeling (Koetz et al., 2004; Schlerf & Atzberger, 2006). One
limitation of these approaches is the limited characterization of
canopy structure, in both horizontal and vertical dimension.
Airborne laser scanning (ALS) systems can overcome this
shortcoming by penetrating the canopy and revealing the
vertical stratification of the canopy, as well as the horizontal
structure in case of small-footprint systems providing high point
densities. Thus, ALS systems have been widely used for stand-
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wise derivation of structural parameters (Lefsky et al., 1999;
Lovell et al., 2003; Means et al., 2000), often by means of
regression methods choosing some ALS predictor variables
(e.g., height percentiles) for ground-based measures of struc-
tural information (Andersen et al., 2005; Cohen et al., 2003;
Næsset, 2002, 2004). Using small footprint laser data with high
point density, the derivation of single tree metrics becomes
possible. Its feasibility has been shown by a number of studies
(Andersen et al., 2002; Hyyppä et al., 2001; Morsdorf et al.,
2004). Some previous studies have already derived LAI and
fCover from laser scanning data. Riano et al. (2004) used a
relation from Gower et al. (1999) to compute LAI from the gap
fraction distribution derived by means of airborne laser scan-
ning, whereas Lovell et al. (2003) used ground-based laser range
finder information to model LAI using canopy profiles. Koetz
et al. (2006) have used a LIDAR waveform model to invert
fCover and LAI from large footprint LIDAR data.

Many small footprint sensors are capable of recording dis-
crete returns (e.g., first and last return, or up to five returns), but
not the entire waveform. Small footprint, full waveform sensors
are just becoming commercially available. Still, discrete returns
contain valuable information about the vegetation density and
structure at a high spatial resolution, usually in the order of less
than 1 m. It has been shown in a number of studies that first and
last returns can be used to model stand properties such as basal
area, biomass and LAI. White et al. (2000) have compared
different methods for field LAI estimation with airborne laser
altimetry, but for a completely different ecosystem compared to
the boreal vegetation found in our study area. Our objective is to
evaluate the potential of deriving fCover and LAI from discrete
return (first and last), small footprint laser data exploiting the
information contained in both return types. Our aim is to es-
tablish physically meaningful predictor variables and to eval-
uate their performance with indirect field measurements based
on high-precision georeferencing. Emphasis will be placed on
differences in viewing geometry between field-based methods
and airborne laser scanning. Furthermore, special regard will be
paid to the fact that the indirect methods used as ground truth are
themselves essentially remote sensing methods.

2. Data

2.1. Site description

The study area for the acquisition of field data is located in
the eastern Ofenpass valley, which is part of the Swiss National
Park (SNP). The Ofenpass represents a dry inner-alpine valley
with rather little precipitation (900–1100 mm/year). Surrounded
by 3000 m high peaks, the Ofenpass valley starts at about
1500 m a.s.l. in the west and quickly reaches an average altitude
of about 1900 m a.s.l towards the east. The south-facing Ofen-
pass forests, the location of the field measurements, are largely
dominated by mountain pine (Pinus mugo ssp. uncinata) and
some stone pine (Pinus cembra), which are of interest for natural
succession (Lauber & Wagner, 1996; Zoller, 1992). These forest
stands can be classified as woodland associations of Erico–Pi-
netum mugo (Zoller, 1995).
In Fig. 1 an overview of the test site is given. More than 20%
of the stand consists of upright standing dead trees, having a
minimum age of 90 years, and mean and maximum ages of 150
and 200 years, respectively.

2.2. Laser scanning data

In October 2002 a helicopter-based ALS flight was carried out
over the test area, covering a total area of about 14 km2. The ALS
system used was the Falcon II Sensor developed and maintained
by the German company TopoSys. Its sensor specifications are
given in Table 1.

The system is a fiber-array laser altimeter recording both first
and last intensity peaks from the laser return signal (first/last echo
FE/LE). The flight was conducted with a nominal height over
ground of 850m, leading to an average point density of more than
10 points per square meter (p/m2). A smaller subset of the area
(0.6 km2) was flown at a height of 500 m above ground, resulting
in a point density of more than 20 p/m2, thus combining the two
data sets yielded to a point density of more than 30 p/m2 for both
first and last echo.We only used data from the lower over-flight in
this study. The footprint sizes were about 0.9 m in diameter for
850 m flight altitude and about 0.5 m in diameter for 500 m
altitude. The raw data delivered by the sensor (x,y,z-triplets) were
processed into gridded elevation models by TopoSys using the
company's own processing software. The Digital Surface Model
(DSM) was processed using the first pulse reflections, the Digital
Terrain Model (DTM) was constructed using the last returns and
filtering algorithms. The grid spacing was 1 m for the large area
and 0.5 m for the smaller one, with a height resolution of 0.1 m in
both cases. A quality analysis of the raw data was done using six
artificial reference targets and is described in detail in Morsdorf
et al. (2004). The standard deviations of height estimates based on
raw echoes on these targets were as low as 6 cm, with the internal
accuracy of the ALS data well below the pixel size of 0.5 m.

2.3. Field inventory

On one hand, the definition of LAI is quite simple, but on the
other, its estimation in the field is not trivial at all. There are
various ways of determining LAI; a comprehensive summary is
given by Jonckheere et al. (2004). Methods can be categorized
in two classes, direct and indirect. Direct methods generally use
destructive sampling to estimate the total number of leaves on a
tree and their area, included angles and distribution to estimate
LAI. Indirect methods mostly measure some aspect of the
radiative regime and infer the LAI from the distribution of light
inside the canopy. Even though the definition of both LAI and
fCover is quite different, they are often estimated by the same
measurement principle, e.g., LAI2000 or hemispherical photo-
graphs, which both can be used to compute LAI and fCover
(Jonckheere et al., 2004). We took hemispherical photographs
as field samples using a Nikon Coolpix 4500 with a fish-eye
lens. The small plot in Fig. 1 shows a canopy height model
(CHM) of the area over flown with the lower altitude. Black
dots indicate positions where hemispherical photographs were
taken in 2002. In 2005, another data collection was carried out



Fig. 1. The Digital Terrain Model (DTM) of the Ofenpass area in the Swiss National Park. The smaller area marked by the black box was sampled with higher point
density due to the lower flying height of 500 m above ground. A canopy height map of that area is displayed in the lower left. Black dots mark positions of
hemispherical photographs that were taken in 2002 using a handheld GPS for georeferencing. Red dots indicate positions were hemispherical photographs were taken
using differential GPS for georeferencing (2005). Black squares mark areas where the histograms in Figs. 2 and 3 were computed from.

Table 1
Specifications of Falcon II sensor platform

Falcon II specifications

Maximum range 1600 m
Range resolution 2 cm
Scanning angle ±7.15°
Line-scan frequency 653 Hz
Pulse frequency 83 kHz
Laser wavelength 1560 nm
Number of fibers 127
Beam divergence 1 mrad
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at locations marked by red dots. In 2005, a total of 83 hemis-
pherical photographs was taken, and the location of each image
was measured using differential GPS equipment. We used three
Trimble receivers (one 5700 and two 4700 types) for GPS
measurements. One 4700 receiver was set up as base station on
a known fixed point of surveying quality inside the study area.
The resulting baselines were rather short, between 10 and 600 m
in length. The 5700 receiver was used together with a data
display (TSCE) to carry out fast static point measurements. A
surveying tripod was set up at and leveled at each location, with
the GPS antenna placed on top. Succeeding the GPS
measurement, the hemispherical photographs were taken. GPS
occupation times at each location varied according to satellite
availability from 3 to 30 min, and the resulting accuracies based
on GPS RMS are in the range of 0.5–5.4 cm with a mean of
1.84 cm. The canopy in our study area was not too dense
(medium fCover values of about 40%), thus in most cases
occupation times of about 5 min were enough (>5 satellites
tracked during measurement), but in the denser parts longer
occupation times of up to half an hour were needed to achieve
centimeter accuracy.

2.4. Processing of field data

The hemispherical photographs were analyzed using the Gap
Light Analyzer (GLA, Frazer et al., 1997) software. Gap frac-
tions were computed for zenith angles from 0° to 90° with 5°
spacing, and averaged over all azimuth angles. Areas with
sunlight (in about 20 images) were treated separately by a local
threshold, before applying a global threshold, as was done for
the rest of the images containing no illumination effects due to
direct sunlight. LAI was computed for each photograph by GLA's
own routines. In coniferous canopies, clumping of small-scale
canopy elements (e.g., needles, twigs) into shoots of some cen-
timeters to some decimeters in size manifests an underestimation
of LAI that needs to be corrected (Smolander & Stenberg, 2003).
Clumping at shoot scale can be addressed by correcting the
indirect LAI estimates (often called effective LAI, LAIeff) with a
factor depending on the projection function of canopy elements
(Weiss et al., 2004). We decided to derive only LAIeff, since a
simple coefficient does not alter the quality of our regression. If
one needs values for true LAI, one would have to multiply our
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values by 1.75 (Chen, 1997; Koetz et al., 2004). We applied this
correction factor for generating the maps presented in Section 4.5.
fCover was derived from the canopy openness measure CO[%] of
GLA, which is based on the fraction of sky pixels weighted with
hemispherical area by Eq. (1)

f Cover ¼ 1 − CO ð1Þ
Only pixels from zenith angles smaller than 10° were used for

the estimation of fCover, as was proposed byWeiss et al. (2004).
3. Methods

3.1. Derivation of fractional cover from laser data

The Toposys Falcon II system is capable of recording a first
and a last echo of the return signal. A first echo will be triggered
if the return signal reaches a certain intensity; hence, the vege-
tation cover reaches a critical density and/or reflectivity. If the
vegetation is not too dense, a part of the beam can further
penetrate the canopy, until the threshold for the intensity is
surpassed a second time and the so-called last echo is triggered.
Depending on the vegetation openness and density, this can be
on the ground or inside the vegetation. A minimum distance
needs to be between the first and last echo for their separation,
which depends on the pulse duration of the laser emitter. With a
system recording first and last echo, three types of returns
scenarios are possible:

• first echo
• last echo
• single echo, first echo= last echo
Fig. 2. Histogram of difference of first and last pulse (a), histogram of first, last and si
better visibility of the vegetation part of the histogram, and thus, the percentage of las
drawn from this graph.
The term single echo describes the case where only one echo
is triggered from a return signal, resulting in both values having
the same height. Most single echoes will come from plain
surfaces such as roads or generally from the ground, but there
are some in the vegetation, as will be discussed in the Section
4.1.

For each of the three return classes, we computed fCover
according to Eqs. (2) and (3).

f Cover ¼
P

EvegetationP
Etotal

ð2Þ

with

Evegetation ¼ Etotal > 1:25 m ð3Þ
Evegetation and Etotal denotes vegetation echoes and all

(ground and vegetation) echoes respectively. We chose a height
threshold of 1.25 m, since this was the height at which the lens
was placed when taking the hemispherical photographs.

The value of fCover for first pulse data is larger than that for
single echoes, which in turn is larger than the value for last
echoes, as can be seen in Figs. 2(b) and 3(b). Lovell et al. (2003)
concluded from similar findings that the real value of fCover
must satisfy the following condition:

f CoverFE > f Cover > f CoverLE ð4Þ
FE and LE denote first echo and last echo, respectively. Based

on Eq. (4) one can state that using first pulse information for
fCover estimation will overestimate the true fCover value, where-
as using last pulse information will underestimate true fCover.
The value of true fCover lies somewhere in between, but where
ngle echoes (b) for site LWF. Note that limits of the y-axis have been lowered for
t/single echoes to first echo and the absolute number of ground echoes cannot be
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Fig. 3. Histogram of difference of first and last pulse (a), histogram of first, last and single echoes (b) for site STA. The heights have been subtracted by terrain heights
interpolated to raw data coordinates from the digital terrain model Toposys provided.
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exactly is difficult to ascertain, as it will depend on vegetation
type/condition and sensor specifications. Many studies deriving
stand level indices have only used first pulse data (Yu et al., 2004),
since the separation mechanism is not well understood, and still
the most significant information is contained in a first pulse
histogram. As, e.g., Holmgren and Persson (2004), we compute
fCover from first and last returns separately by thresholding
vegetation heights according to Eqs. (2) and (3). Following this,
we use single and multiple regressions of these two fCover values
to determine their influence on true fCover as determined by field
measurements. Furthermore, we will compute fCover for circular
ALS raw data patches (data traps) of 2–25 m in diameter.

3.2. Derivation of LAI from laser data

Our goal is to establish a predictor variable of LAI that is
closely linked to the way LAI is estimated using the indirect
methods in the field. Following Weiss et al. (2004), the LAI can
be expressed through the following equation. The leaf area
index, L, at a level H in the canopy is related to the leaf area
density l(h) through

L ¼
Z H

0
lðhÞdh ð5Þ

If we introduce the contact frequency N(H, θυ, /υ) we can
write Eq. (5) as follows:

N H ; hυ/υð Þ ¼
Z H

0
G h; hυ/υð Þ lðhÞ

coshυdh
ð6Þ
θυ and /υ denote viewing zenith and azimuth angle, respec-
tively, and G(h, θυ, /υ) the projection function. If leaf area
density and projection function are considered independent of the
level h in the canopy Eq. (6) can be simplified into Eq. (7):

N L; hυ;/υð Þ ¼ Gðh; hυ;/υÞ
L

coshυ
ð7Þ

Considering the Falcon II system with its maximum scan-
ning angle of 7.1°, cosθυ is only changing up to 0.75% from 1
and can thus be neglected. As we have solely conifers in our
study area, the projection function is set to 0.5 assuming a
spherical foliage distribution (as in Sun & Ranson, 2000; Koetz
et al., 2004); thus, we yield a direct proportional relationship of
contact frequency to LAI:

NðLÞ ¼ 0:5⁎L ð8Þ
The contact frequency itself should be linearly related to the

distribution of first, single and last echoes inside the canopy. We
still need to account (calibrate) for specific instrument charac-
teristics, which will be footprint size (depends on beam diver-
gence and flying height) and the thresholding algorithm for
detection of first and last pulse, as well laser beam attenuation
through the atmosphere. In this study, we are using a linear
regression model to do so.

Based on the concept of contact frequency we propose to
compute a LAI proxy from ALS data by

NLAI ¼
P

EFEP
E þ E

ð9Þ
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EFE, ESE and ELE denote the three types of returns described
in detail in Section 3.1, but only for crowns. The vegetation
returns are classified by thresholding the height over terrain of
the raw laser hits with a value of 1.25 m, according to the
estimation of fCover in Eq. (3). The hypothesis for this proxy is
as well based on results displayed in Figs 2(b) and 3(b). As for
fCover, we will compute this LAI proxy for circular ALS data
traps of 2–25 m in diameter.

Dispersion of crowns inside the canopy is not an issue for our
approach, since we only compute the fraction of returns from
greater than 1.25 m above the ground, thus, inside the canopy.
This is a valid approach, since our study site is a single layered
and almost a single species canopy type. Thus, our contact fre-
quency measure is only derived from crowns, due to the ability of
high point density, small footprint laser scanner data of spatially
resolving single tree crowns (Morsdorf et al., 2004). In order to
compare these ALS-derived estimates of canopy LAI with in-
direct field measurements, we need to correct for the distribution
of canopy elements (e.g., trees) in the scene, which will be done
by using the ALS derived fCover values. Since the LAI estimated
by ALS is only estimated for the canopy, we need to multiply that
LAI value with the respective value of ALS derived fCover in
order to yield an LAI estimation for the whole data trap. For
instance, if the canopy LAI (LAI only computed from canopy
elements) was 4 and the fCover value of that respective scene 0.5,
then the real LAI for the scene would be 2. Hemispherical pho-
tographs only measure the scene LAI and fCover, since they
cannot discriminate between gaps within crowns and gaps bet-
ween neighboring crowns.

NLAI;scene ¼ NLAI;canopy⁎fCoverscene ð10Þ
Still, we need to assume horizontal and vertical uniform leaf

angle and leaf property distribution. One leaf property that could
alter this way of LAI estimation is leaf reflectance. The difference
of reflectance between ground and canopy needs to be considered
as well. This reflectance difference reveals a major caveat regard-
ing the comparability of laser-based vegetation indices from dif-
ferent stands and possibly even different sites. We will discuss its
influence in greater detail in the following section.
3.2.1. Vegetation reflectance considerations
Based on fieldmeasurements, the foliage reflectance at 1560 nm

(wavelength of laser beam) is 21.5%, whereas the background
reflectance of the under-story is 15.2%,making up for a ratio of 1.4.
This ratio is specific for our study area and can be considered a
constant for our area, due to the homogeneity of the canopy and
under-story in respect to plant species. In order to assess the
feasibility of our approach regarding the assumption on spatially
uniform reflectance of the canopy, we conducted some tests using
PROSPECT (Jacquemoud & Baret, 1990), modeling the reflec-
tance of the green canopy elements in our study site using average
leaf parameters from field measurements collected at different sites
(Koetz et al., 2004). We varied the moisture content within a range
observed in the field, as at 1560 nm absorption due to moisture is
the dominant effect. Simulated leaf reflectance yielded 20.8%
reflectance for the lowest values of moisture and 19.2% for the
highest value observed, making up for an absolute difference of
only 1.6%.This is small enough to be neglected, considering results
from a practical test using artificial targets on object visibility using
different reflectances (Wotruba et al., 2005). All other parameters of
PROSPECTwere left constant, since our test site is predominantly
covered by only one tree type, which is mountain pine.

3.3. Regression methods

For all regressions in this paper, adjusted R2 and RMSE were
computed by the following equations (see Kvalseth, 1985, for
details):

R2 ¼ 1−
n−1
n−p

Pðy− ̂yÞ2Pðy− ȳ Þ2 ð11Þ

n is the number of samples, p is the number of parameter in the
regression model (which is two for all our presented regres-
sions), ŷ is the fitted value of a sample y (e.g., LAI) and ȳ is the
mean of all y's. The root mean square error is calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðy− y ̂Þ2Þ

n−p

s
ð12Þ

For each of the regressions, we excluded outliers in a first
linear regression, where the 5% confidence interval for the resi-
duals was estimated and values not enclosing zero were flagged
(see Chatterjee &Hadi, 1986, for details).We still include them in
the regression graphs as empty circles, in order to illustrate that
they are real outliers. These outliers may originate from temporal
differences between LIDAR flight and field data collection, but
more likely is that they originate from errors in the acquisition/
processing chain of hemispherical photographs, be it by thresh-
olding errors or illumination differences.

4. Results

4.1. Height histograms

In Figs. 2 and 3 are large area histograms of the measured
vegetation heights of three echo types depicted. These height
distributions are either called modeled waveform in literature
(Riano et al., 2003) or canopy density, as in many other studies.
Colored in medium and darker gray, the last and single echoes
are (if not on ground) mostly concentrated in the upper canopy,
with their maximum just before the maximum of total echoes.
Histograms have been derived from areas with different vege-
tation densities called LWF (Fig. 2) and STA (Fig. 3). Their
geographical extent is marked by black rectangles in Fig. 1.

When comparing the two sites LWF and STA, one can note
that the fraction of last and single echoes in the upper canopy
and lower canopy is higher for STA than for LWF, with the
mean LAI from field measurements equaling about 1 at LWF
and about 2 at STA. This supports our hypothesis that LAI can
be estimated by the fraction of different return types inside the
canopy. From the upper panels of these figures, we can also read
off the approximate instrument dead-time, which is the



Fig. 4. Matrix of coefficients of determination (R2) for regression of field
measured gap fraction and ALS derived fCover for a range of zenith angles and
ALS raw data patch sizes. The theoretical line of maximum correlation was
plotted as well for two different canopy heights.
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minimum vertical distance required between two objects to be
separately detected by first and last echo. This minimum
distance is approximately 1 m, which can be seen in Figs. 2(a)
and 3(a). There, a height distribution of the difference of first and
last echo is shown, and one can clearly notice the gap from zero
to near the 1 m bin. This minimum distance is due to the laser
pulse duration. As our typical crown height is between ∼3 and
8 m, we should be able to receive separated echoes (first/last)
from the crowns in most cases.

4.2. Scales of correlation

If both ground measurements and airborne data are geore-
ferenced to within less than 1 m, one can assign each hemis-
pherical photograph an area of ALS raw data for the LAI and
fCover derivations. Since one does not know how far the hemis-
pherical photograph can “see”, we needed to have an estimate of
how large the diameter of ALS data has to be chosen around the
position of the hemispherical photograph in order to get good
agreement of field estimates and the respective ALS ones. Thus,
we computed fCover for patches (or traps) from 4 to 50 m dia-
meter according to Eq. (2). These patches have also been called
data traps in literature (Lovell et al., 2003). We varied also the
zenith angles, since we did not really knowwhich zenith angles of
hemispherical photographs would capture the information con-
tained in these patches. The distance range that the hemispherical
photographs can sample will depend on the vegetation density in
the horizontal dimension and on vegetation density and canopy
height in the vertical dimension.

In Fig. 4 we display a matrix containing the R2 values for each
regression of field and ALS estimates of gap fraction (which in
case of ALS is fCover), varying ALS data trap size (x-axis) and
zenith angle of hemispherical photograph (y-axis). From this
figure, it is evident that significant correlation (as denoted by R2

values >0.6) occur for all zenith angles from 0° to 65° and for 1 to
25 m in radius of ALS raw data patch. For smaller zenith angles,
the correlation is high only for small data trap sizes, whereas for
larger trap sizes there is only high correlation for large zenith
angles. Especially, at very small zenith angles of less than 10°,
there is a significant linear relationship of gap fraction with ALS
data at trap sizes of up to 2 m in diameter. This shows that the
georeferencing was sufficient in order to link the data at such
small scales. For each zenith angle, we computed the required
data trap size to capture the complete field of view of a hemis-
pherical photograph for a defined canopy height. This should
work under the assumption that the canopy is not too dense, and
thus limit the distance a hemispherical photograph will be able to
“look”. Using the values of 6 m and 13 m as lower respective
upper bounds for canopy height, a trigonometric curve was
computed and included in the Fig. 4 as black and grey lines. The
maxima of correlation (R2>0.6) are in good agreement with these
lines, with some regression models having an R2 as high as 0.8.

4.3. fCover

For the derivation of fCover from hemispherical photographs
only the innermost zenith angles up to 10° should be used ac-
cording toWeiss et al. (2004). The zenith angles up to 10° have the
highest correlation with data trap sizes of radii up to 2 m, as can be
seen at the axis-crossing in the upper-left corner of Fig. 4. Thus,
we computed fCover from ALS data traps sized 4 m in diameter
for each first and last echo data separately. Fig. 5 contains the
regressions of these ALS derived fCover values with the res-
pective field measurements. The upper panel contains the fCover
value computed from first echo data, the lower the respective one
for last echo data. The R2 for the first echo data is 0.73, with the
RMS of 0.18. TheR2 for the last echo regression is lower than that
for the first echo data (0.36, with an RMS of 0.11). By comparing
the regression lines with the one to one line (thick black one), one
can note as well that first echo data will overestimate true fCover,
whereas last echo data will underestimate. A multiple regression
for both last echo and first echo-based fCover against field
measured values was carried out as well. There was no increase of
R2 (remained at 0.73) over the solely first echo-based regression.
Thus, we used the regressionmodel based on first echo data for the
computation of fCover values in Fig. 8. There seems to be more
noise attributed to the lower values, especially in the regression of
first echo derived fCover. Higher values are generally less dis-
tributed about the regression line. It is also evident that a lot of last
echo derived fCover values are zero, while the hemispherical
photographs still produced values greater than zero. This is an
effect of vegetation being transparent in respect to last echo returns
to some extent, depending on vegetation density.

4.4. LAI

The same procedure was carried out for the LAI proxy, but we
could not vary the zenith angles GLA uses to compute LAI from.
GLA offers either an LAI 5 Ring value, integrated from zenith
angles of 0–75° or an LAI 4 Ring value, which is integrated from



Fig. 6. Coefficient of determination (R2) for LAI proxy regression for a range of
ALS raw data patches.

Fig. 7. Regression of ALS derived LAI Proxy NLAI,scene with LAIeff from
hemispherical measurements. Processing of hemispherical photographs was
done using GLA. Red circles denote outliers, which have not been used for the
statistic computations.

Fig. 5. Regression of ALS derived fCover with respective values computed from
hemispherical photographs. Upper panel shows regression for first echo data,
lower shows regression for last echo data. Red circles denote outliers, which
have not been used for the statistic computations.
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zenith angles of 0–60°.We used the latter for the regressions
presented in this paper. Thus, we can only provide the depen-
dency of the LAI regression relative to the size of laser raw data
patch, which is depicted in Fig. 6. The values of R2 are as low as
0.1 for patches of 2 m in radius and reaches a maximum of about
0.65 at about 15 m in diameter. For larger radii than that, R2

decreases to values below 0.5. Thus, we chose a diameter of
30 m for the LAI regression in Fig. 7.

In Fig. 7 the regression ofALS derived LAI and fieldmeasured
(hemispherical photographs) is depicted. R2 is 0.69, with an RMS
of 0.01. The regression model coefficients are used to compute
LAI for the maps in the following section. The number of samples
used for the LAI regression is 52, since we excluded all images
where the influence of direct sunlight was visible. It is also visible
that the spread of values (hence, noise) about the one-on-one
relation is higher for larger LAI values, resulting in a behavior
opposite of what was observed for fCover in Fig. 5.

4.5. Maps of LAI and fCover

Using the regression models, we computed maps for both LAI
and fCover for the small study area. For a qualitative comparison,
we placed these maps side by side with maps derived by imaging
spectroscopy using radiative transfer modeling (Koetz et al.,
2004). The imaging spectrometer data set has been acquired by
the sensor DAIS7915 in the summer 2002 over SNP in a geo-
metric resolution of 10 m matching the one of the ALS (Chang,
1993). The inversion of the coupled radiative transfer models
PROSPECT and GeoSAIL provided biophysical vegetation pro-
perties including LAI and fCover (Huemmrich, 2001; Jacque-
moud & Baret, 1990). The maps are depicted in Fig. 8, with the
results from ALS on the left side and the respective results from
imaging spectrometry on the right side. The LAI in the lower left
plot is the unclumped, true LAI, which was calculated by mul-
tiplying the values of LAIeff (as estimated using our regression
model) by 1.75 (Koetz et al., 2004). One can note that values
appear to be in the same range for both LAI and fCover as derived
by bothmethods. The spatial patterns aremore or less the same for
both methods, with high LAI and fCover values towards the large



Fig. 8. Maps of fCover and LAI for the small study area (black square in Fig. 1) derived both from airborne laser scanning and imaging spectrometry. The pixel size in
each case is 10 m. Note that for imaging spectrometry areas containing non vegetated surfaces (road, river bed) have been masked out.
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alpinemeadowon the right hand side. There are some differences,
though. For ALS, the alpine meadow, road or river-bed areas are
correctly assigned a tree LAI and fCover of 0. For the imaging
spectroscopy approach forest andmeadow areas would need to be
identified and separated a priori since the employed radiative
transfer model cannot distinguish between these surface types. A
standard land surface type classification based on the spectral
information content of the imaging spectrometer data could be
used to mask out non-forest surface types.

Comparing fCover and LAI, high LAI values are visible es-
pecially at the edges of forest or close to gaps, where the vege-
tation has better environmental conditions. However, the larger
spatial patterns are similar to the map of fCover. This is due to the
fact that other ecological parameters control the healthiness and
distribution of the vegetation. The spatial patterns of these para-
meters and processes are then masked into the maps of LAI and
fCover.

5. Discussion and conclusions

In the past years, airborne laser scanning has been established
as a valuable tool for forest structural analyses. Algorithms for the
derivation of properties such as tree height, biomass and basal
area have been implemented and evaluated on various study sites
using laser data from both small and large footprint systems. Our
aim was to show the potential of small footprint laser data for the
derivation of fCover and LAI, using only single and possibly
physical meaningful ALS predictor variables. As was found in
previous studies, we could show that it is possible to estimate
fCover from ALS data by using the fraction of vegetation echoes
over ground echoes as a predictor variable. fCover was computed
from both first and last echoes using a data trap size of 2 m radius,
with R2 higher for first echo data (0.73) and lower for last echo
data (0.36). First echo-based fCover valueswill overestimate field
measured values, whereas last echo-based fCover values will
underestimate them. However, we found that first echo-based
fCover data is sufficient in establishing a link with field data, and
that adding the last echo-based fCover values into a multiple
regression did not improve R2. Thus, an overestimation of ALS
data is visible and needs to be corrected, e.g., through the use of a
regressionmodel aswas done in our study. It is known that fCover
estimates by hemispherical photographs are biased upwards due
to the viewing geometry (Lovell et al., 2003; Weiss et al., 2004),
which will produce a lot of vegetation pixels by stems. Thus, one
could argue that the ALS would provide a truer estimate of
fCover, based on its nearly optimal viewing geometry (near-nadir
view). It should be noted that because of our scanner's small
scanning angle of 7.15°, we were able to neglect its influence on
our results. For larger scanning angles (up to 30°) our findings
may not be valid. Significant noise was visible in our regression,
leading to somewhat lower R2 values. One source of this noise
could be attributed to the difference in viewing geometry of ALS
data and hemispherical photographs. For the lower values the
noise is more prevalent than for the higher values, which could be
explained by heterogeneity effects in the lower density canopy of
the STA site. This is where most of the lower values originate
from. There are also many high laser values assigned with hemi-
spherical values of zero. A high spatial sampling density is needed
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to get robust fCover estimates in medium dense and heteroge-
neous canopies, since the area up to 10° off nadir will in most
cases contain sky. This is probably due to the sampling strategy,
where the camera is not placed too close to a tree to avoid
overestimation due to stems and for practical considerations. For
sparse coniferous canopies such as those present on our test site,
there is a high proportion of sky within the first 10° of zenith
angle. However, ALS systems can provide a much better hori-
zontal sampling of the forest canopy than field inventory methods
such as hemispherical photographs.

We have tried to show that the fraction of different return types
inside the canopy acts as a new and direct predictor variable for
LAI. Regression of the ALS estimates with field data from
hemispherical photographs showed moderate to good agreement,
with an R2 of 0.69 and an RMS of 0.01. For LAI, the ALS data
trap size showing best correlation with hemispherical photo-
graphs was 15 m in diameter, much larger than the one used for
fCover. This is explained by GLA using all zenith angles from 0°
to 60° for its LAIeff computation.

However, an instrument and vegetation type specific calib-
ration parameter will have to be applied to the ALS derived
estimates in any case. The vegetation specific parameter will
probably be influenced by two factors, i.e., reflectance differ-
ences and clumping of canopy elements at smaller scales than
footprint size. Clumping is a well studied phenomenon, since
it needs to be corrected for most field-based methods as well
(e.g., LAI2000, hemispherical photographs, ceptometer, Jonc-
kheere et al., 2004). Correction factors have been derived for
various canopy types that are used in day-to-day field work.
Hence, it would not be too big of a problem to extend their use
to ALS data. Canopy reflectance, though, is an issue that requires
a more complicated procedure. For ALS-LAIeff estimates to be
inter-comparable, the reflectance of canopy elements in the
wavelength of the laser (the ALS system used provides 1560 nm)
should be roughly the same. Modern ALS systems allow as
well the recording of the intensity of the returned signal, so this
information could be used for assessing effects of canopy
reflectance differences. Unfortunately, this option was not yet
available in 2002 when our flight campaign was carried out.
The processing of hemispherical photographs involves the
process of manually thresholding images, a potential source
for biases and random noise. Nobis and Hunziker (2005) have
tried to overcome this by using automatic thresholding. A very
common feature of LAI derived from passive remote sensing
data is the saturation for high values (Colombo et al., 2003;
Koetz et al., 2005). Our approach seems to be capable of
returning effective LAI values above 4 (see Fig. 8). Further
research is needed to determine whether this finding is robust.

A systematic error that could also explain the noise present
in our regressions may be the inability of the hemispherical
photographs to separate between-crown and within-crown gap
probabilities, which they cannot discriminate. By comparison,
the small-footprint ALS can do this to an certain extent. There
is some ambiguity regarding laser returns from the edges of
trees, which could be misclassified as full crown hits. Their
ratio of first to single/last echoes would not be representative
for the within-crown-gap probability. A more sophisticated
treatment of the three return classes to retrieve LAI, instead
than just taking the fraction of first to single and last returns
could also improve the results. It might be that the single
returns are more sensitive to LAI changes and vice versa,
depending on vegetation type and thresholding used. It would
be beneficial to have instruments that deliver intercomparable
results for LAI and fCover from very different areas. This can
only be achieved by taking the radiative regime and the as-
sociated physical processes into account. We have tried to take
a step in that direction by choosing direct, physically meaning-
ful metrics of ALS raw data for LAI and fCover.

Comparing our results with findings from imaging spectro-
metry from the same test area, we found good agreement in
spatial patterns, but also a systematic overestimation of canopy
fCover by imaging spectrometry in areas were only few to no
trees were situated. Thus, ALS does provide a truer estimate of
canopy fCover in these regions. Furthermore, areas which do
not contain vegetation of a certain height do not need to be
masked out manually; a simple threshold will do. The high-
resolution maps of fCover and LAI could have a great potential
for forest structural analysis, but so far, they have not been
applied to tasks such as habitat analysis or other ecological
problems, with exception of the work of Hill et al. (2004),
where the potential of ALS data for bird habitat quality asses-
sment was studied.

We have found that the absolute values of fCover are highly
dependent on the size of LIDAR raw data trap, similar to fin-
dings by Lovell et al. (2003). This effect is dependent on the
size and spatial distribution of canopy elements (e.g., trees).
For a completely homogeneous canopy there should be no
scale dependency of fCover above a certain granularity scale,
e.g., in case of a corn field data traps larger than about 1 m
should not vary significantly in their fCover values. Combined
with methods for single tree extraction (Hyyppä et al., 2001;
Morsdorf et al., 2004), the work we presented would allow the
direct retrieval of a close to “true” foliage profile from airborne
laser scanning data (Lovell et al., 2003; Ni-Meister et al.,
2001). This is due to the fact that between-crown and within-
crown-gap probability can be discriminated. This combination
of the two approaches will be a subject of future work. Only
the small-scale clumping on scales smaller than footprint size
needs to be corrected, whereas crown dispersion is actually
known due to high point density and small footprint size of the
laser scanner used in this study. The downside of small foot-
print laser scanning is its relatively high costs, which would
impede a campaign over a greater area only for, e.g., LAI
retrieval. But since these systems offer many other benefits
(e.g., precise terrain models, forest boundaries, the ability of
deriving single tree characteristics), the cost per feature will
decrease. Currently, the country of Switzerland is being scan-
ned by a small footprint laser scanner up to heights of 2000 m
AGL. This will be a valuable multi-purpose data set, where
LAI and fCover could be additional features. Further studies,
possibly including radiative transfer modeling of single scenes
could aid in further investigating the relationships we estab-
lished and how robust they are with respect to different site
conditions and sensor specifications. Of special interest would
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be differences in canopy reflectance and different ALS system
configurations. Some of these ALS specific parameters that
most probably have an influence on the metrics we used are
flying height (footprint size, point spacing), laser wavelength
and incidence angle.
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