
Geovisualisation Conference

Dr S. B. Hutton

SR-Research, Ontario

(Dept of Psychology, University of Sussex, UK)

How the EyeLink 1000+ works

Host PC - runs realtime OS

- Performs image processing and calculates gaze.
- Sends data to Display PC with
 1.5ms latency allowing gaze
 contingent tasks.
- Can be laptop for portability.

Display PC- runs experiment. Can be Mac / PC / Linux. Stimuli presented via:

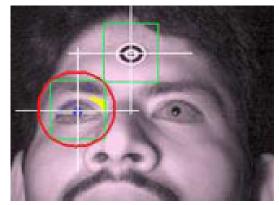
- Experiment Builder
- F-Prime
- Matlab+PTB
- Presentation
- OpenSesame
- Python / C / C++
- LabView Etc.

EyeLink Camera:

- High speed (2000fps).
- Exceptionally low noise
- High spatial accuracy
- Operates in head fixed and head free modes.

Head fixed vs Head free

Head fixed mode:



Tower mount allows pointing / touch screen research

Head free mode:

Collecting Data: Tracker specifications

What are the spatial and temporal resolutions of the recording?

(spatial resolution is NOT the same thing as accuracy...)

- Spatial: <0.01 degs (head fixed)
- Spatial: <0.05 degs (remote)
- Temporal: 2000Hz (typically 1000Hz)

Accuracy: Typically 0.2-0.5 degs in head fixed mode, <0.5 degs in head free mode.

Eye tracking accuracy reflects error in the oculomotor systems as well as noise in the eye tracker.

Collecting Data: Synchronisation

How can one co-register other motion sensing or physiological sensors (ie sync devices)?

- Markers sent from or to display PC (via parallel port or external USB device).
- Analogue output card for EEG / MEG etc
- Data can be sent directly to parallel port pins on host
 PC to be merged with eye movement data.
- Gaze overlay can be output in real time and merged with other data (beta)

Real time gaze output can be merged with other real time info (beta)

http://www.youtube.com/watch?v=tgnlYjf5iU
 <u>c</u>

Collecting Data: Data

Can one access the raw data?

- Yes in real time: Raw data consists of -
 - 1) Samples: timestamp, X, Y and pupil size
 - 2) Events: Saccade / Fixation / Blinks / Messages

In what kinds of formats can data be exported or accessed?

Native binary / Ascii conversion tool

How can one move data between systems (ie merging data)?

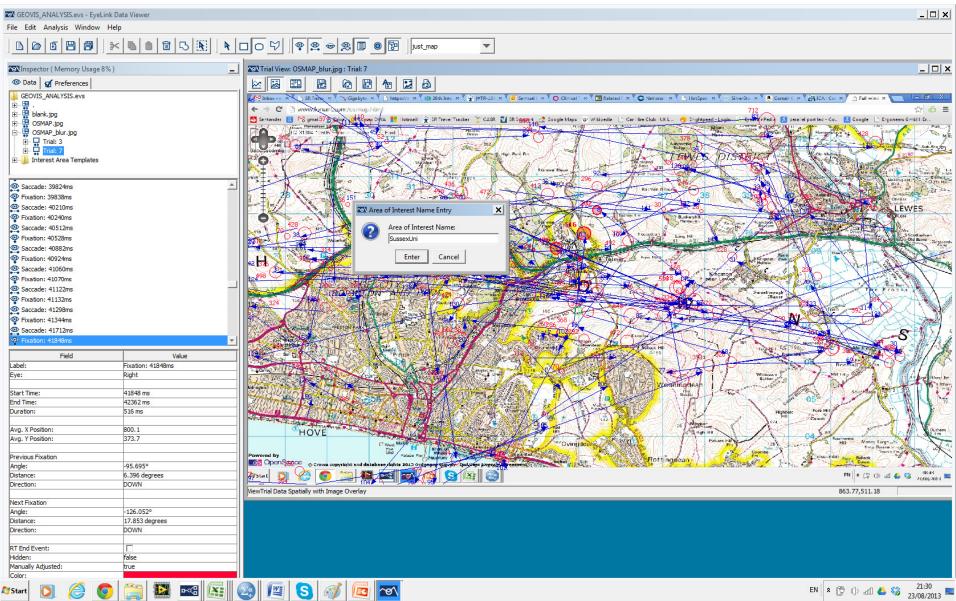
 Convert to ascii / analogue out option for real time merging with EEG / EMG etc.

Analysing Data

What are the system's out of the box capabilities for analysing dynamic stimuli (e.g. changing screen displays during an interactive session)?

- DataViewer software does animated trial playback. Dynamic IAs are in beta testing.
- Popup calibration utility records screengrab + gaze
- Hi-res gaze overlay currently beta

Analysing Data


What types of eye-tracking metrics are implemented in the analysis software?

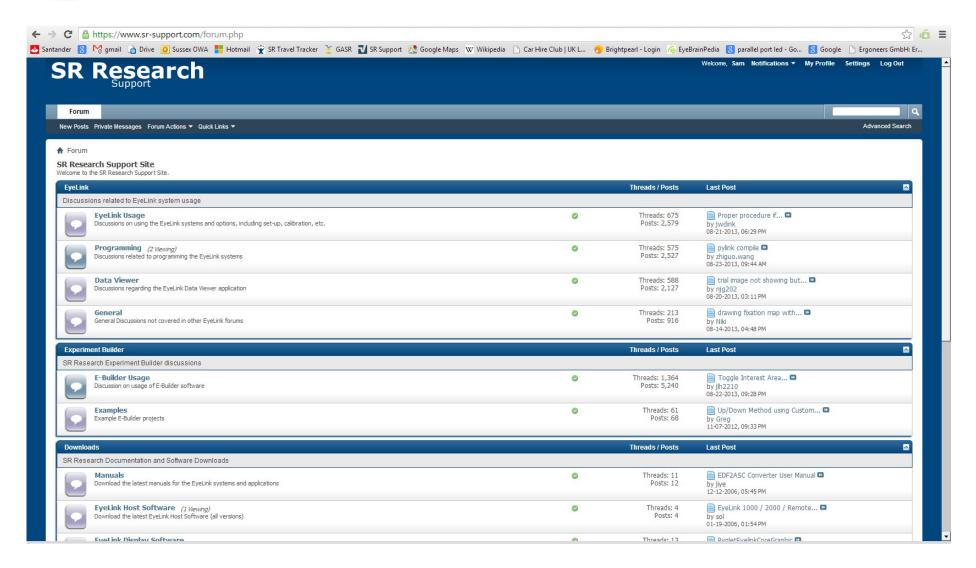
DataViewer is very sophisticated analysis software:

- IA reports one row per IA: Over 100 different metrics including dwell time / dwell time % / first fixation time / run count / IA contingency tables etc etc
- Fixation reports one row per fixation: lots of metrics including duration; start,end,average x and y; min / max / mean pupil size etc etc
- Saccade reports one row per saccade: lots of metrics amplitude; direction; latency; start/end x/y; peak velocity etc etc
- Sample reports one row per sample –lots of metrics including X,Y, IN_BLINK, IN_SACCADE, IA_LABEL etc etc

General

What types of support materials and training are available from the vendor?

- SR Research support is legendary a company run by eye tracking researchers for eye tracking researchers. All support staff have PhDs in psychology / psycholinguistics / psychophysics / vision science and extensive experience in eye tracking research.
- Over 100 peer reviewed publications by <u>company staff.</u>
 (over 2600 by our customers...)
- Support forums
- support@sr-research.com (answer within 2 hours)
- Support helpline (North American hours)
- Skype calls to UK office (European hours).


SR-Research staff publications

(staff are highlighted in red)

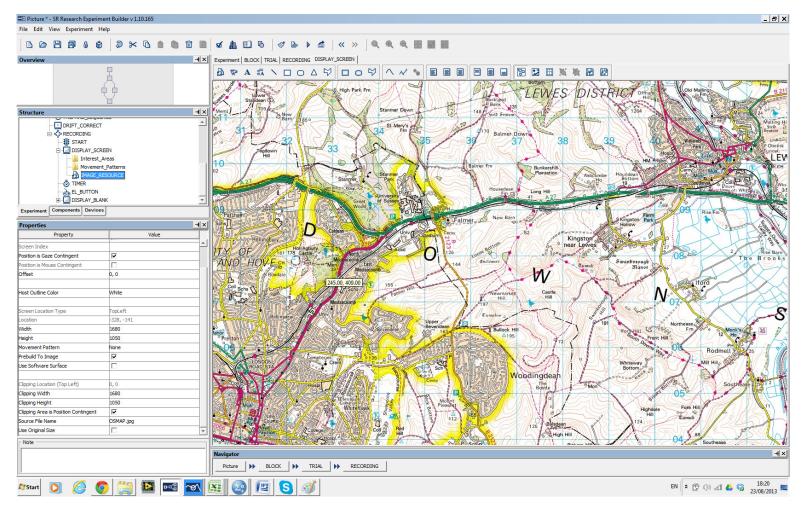
- 1.Cabel, D. W. J., Armstrong, I. T., Reingold, E., & Munoz, D. P. (2000). Control of saccade initiation in a countermanding task using visual and auditory stop signals. Experimental Brain Research, 133, 431-441.
- 2.Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory & Cognition, 29, 1146-1152.
- 3.Daneman, M., & Reingold, E. M. (2000). Do readers use phonological codes to activate word meanings? Evidence from eye movements. In A. Kennedy, R. Radach, D. Heller & J. Pynte (Eds.), Reading as a perceptual process (pp. 447-473). Elsevier: Amsterdam.
- 4.Glaholt, M. G., & Reingold, E. M. (2009). Stimulus exposure and gaze bias: A further test of the gaze cascade model. Attention, Perception, & Psychophysics. 71, 445-450.
- 5.Hall, J. K., Hutton, S. B., & Morgan, M. J. (2010). Sex differences in scanning faces: Does attention to the eyes explain female superiority in facial expression recognition? **Cognition & Emotion**, 24, 629-637. 6.Heaver, B., & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. **Memory**, 19, 398-405.
- 7. Hodgson, T. L., Mort, D., Chamberlain, M. M., Hutton, S. B., O'Neill, K. S., & Kennard, C. (2002). Orbitofrontal cortex mediates inhibition of return. Neuropsychologia, 40, 1891-1901.
- 8.Hogarth, L., Dickinson, A., Hutton, S. B., Bamborough, H., & Duka, T. (2006). Contingency knowledge is necessary for learned motivated behaviour in humans: Relevance for addictive behaviour. Addiction, 101, 1153-1166.
- 9.Hogarth, L., Dickinson, A., Hutton, S. B., Elbers, N., & Duka, T. (2006). Drug expectancy is necessary for stimulus control of human attention, instrumental drug-seeking behaviour and subjective pleasure. Psychopharmacology, 185, 495-504.
- 10. Hutton, S. B., & Tegally, D. (2005). The effects of dividing attention on smooth pursuit eye tracking. Experimental Brain Research, 163, 306-313.
- 11. Hutton, S. B., & Weekes, B. S. (2007), Low frequency rTMS over posterior parietal cortex impairs smooth pursuit eve tracking. Experimental Brain Research, 183, 195-200.
- 12.Johnson, M.L., Lowder, M.W., & Gordon, P.C. (2012). The sentence composition effect: Processing of complex sentences depends on the configuration of common versus unusual noun phrases. *Journal of Experimental Psychology: General.*
- 13.Reingold, E. M. (2002). On the perceptual specificity of memory representations. Memory, 10, 365-379.
- 14.Gordon, P. C., Hendrick, R., Johnson, M., & Lee, Y. (2006). Similarity-based interference during language comprehension: Evidence from eye tracking during reading. Journal of Experimental Psychology: Learning, Memory, & Cognition, 32, 1304-1321.
- 15.Reingold, E. M., & Loschky, L. C. (2002). Saliency of peripheral targets in gaze-contingent multiresolutional displays. Behavior Research Methods, Instruments & Computers, 34, 491-499.
- 16.Reingold, E. M., & Rayner, K. (2006). Examining the word identification stages hypothesized by the E-Z reader model. Psychological Science, 17, 742-746.
- 17.Reingold, E. M., & Stampe, D. M. (2000). Saccadic inhibition and gaze contingent research paradigms. In Kennedy, Alan, Radach, Ralph et al. (Eds.) Reading as a perceptual process (pp. 119-145). Amsterdam, Netherlands: North-Holland/Elsevier Science Publishers.
- 18.Reingold, E. M., & Stampe, D. M. (2002). Saccadic inhibition in voluntary and reflexive saccades. Journal of Cognitive Neuroscience, 14, 371-388.
- 19.Reingold, E. M., & Stampe, D. M. (2004). Saccadic inhibition in reading. Journal of Experimental Psychology: Human Perception and Performance, 30, 194-211.
- 20.Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12, 48-55.
- 21.Rycroft, N., Hutton, S. B., Clowry, O., Groomsbridge, C., Sierakowski, A., & Rusted, J. M. (2007). Non-cholinergic modulation of antisaccade performance: a modafinil-nicotine comparison. Psychopharmacology, 195, 245-253.
- 22.Rycroft, N., Hutton, S. B., & Rusted, J. M. (2006). The antisaccade task as an index of sustained goal activation in working memory: modulation by nicotine. Psychopharmacology, 188, 521-529.
- 23.Rycroft, N., Rusted, J. M., & Hutton, S. B. (2005). Acute effects of nicotine on visual search tasks in young adult smokers. Psychopharmacology, 181, 160-169.
- 24.Pomplun, M., Reingold, E. M., & Shen, J. (2001). Investigating the visual span in comparative search: The effects of task difficulty and divided attention. Cognition, 81, B57-B67.
- 25.Pomplun, M., Reingold, E. M., & Shen, J. (2001). The effects of peripheral and parafoveal cueing and masking on saccadic selectivity in a gaze-contingent window paradigm. Vision Research, 41, 2757-2769.
- 26.Pomplun, M., Reingold, E. M., & Shen, J. (2003). Area activation: A computational model of saccadic selectivity in visual search. Cognitive Science, 27, 299-312.
- 27. Pratt, J., Shen, J., & Adam, J. J. (2004). The planning and execution of sequential eye movements: Saccades do not show the one target advantage. Human Movement Science, 22, 679-688.
- 28.Shen, J., Reingold, E. M., & Pomplun, M. (2000). Distractor ratio influences patterns of eye movements during visual search. Perception, 29, 241-250.
- 29.Shen, J., Reingold, E. M., & Pomplun, M. (2003). Guidance of eye movements during conjunctive visual search: The distractor-ratio effect. Canadian Journal of Experimental Psychology, 57, 76-96.
- 30.Schmidt, W. C. (2000). Endogenous attention and illusory line motion reexamined. Journal of Experimental Psychology: Human Perception and Performance, 26, 980-996.
- 31.Sullivan, S., Ruffman, T., & Hutton, S. B. (2007). Age differences in emotion recognition skills and the visual scanning of emotion faces. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 62, 53-60.
- 32. Tatler, B. W., & Hutton, S. B. (2007). Trial by trial effects in the antisaccade task. Experimental Brain Research, 179, 387-396.
- 33. Taylor, A. J. G., & Hutton, S. B. (2007). The effects of individual differences on cued antisaccade performance. Journal of Eye Movement Research, 1(1):5, 1-9.
- 34.Taylor, A. J. G., & Hutton, S. B. (2009). The effects of task instructions on pro and antisaccade performance. Experimental Brain Research, 195, 5-14.
- 35. Wengelin, ,, Torrance, M., Holmqvist, K., Simpson, S., Galbraith, D., Johansson, V., & Johansson, R. (2009). Combined eye-tracking and keystroke-logging methods for studying cognitive processes in text production. **Behavior Research Methods**, 41, 337-351.
- 36.Williams, D. E., & Reingold, E. M. (2001). Preattentive guidance of eye movements during triple conjunction search tasks: The effects of feature discriminability and saccadic amplitude. **Psychonomic Bulletin & Review**, 8, 476-488.
- 37. Williams, D. E., Reingold, E. M., Moscovitch, M., & Behrmann, M. (1997). Patterns of eye movements during parallel and serial visual search tasks. Canadian Journal of Experimental Psychology, 51, 151-164.

SR Research Support Forum

Analysing Data

How do you check the quality of the data & ensure their validity?

- We use artificial eyes (both static and dynamic)
- Peer reviewed comparisons between scleral search coil and EL1K show very close agreement.
- We work with users to perform any tests / checks they require


To what extent are the algorithms of the software exposed? Can one find out the details of what is under the hood?

- Filter (which can be turned off) is published.
- Saccade parser can be configured by user
- Raw data can be reparsed

Generating Data

How easy is it to create experiments and collect data?

• Very – Experiment Builder is intuitive and easy to use and allows complex (e.g. gaze contingent) tasks to be developed very quickly

General

What is on the horizon in terms of the product, with respect to Research & Development?

- Larger headbox in remote mode
- Further improvements to existing software (Host software, Experiment Builder and DataViewer)
- Replacement for old head mounted EL-II (e.g. mobile solution)...