Supporting the creation of a national network of new generation of Cartography.

COLOR DISTANCE ON MAPS

Alzbeta Brychtova^{*}, Arzu Coltekin^{**}, Stanislav Popelka^{*}

* Palacký University in Olomouc Czech Republic ** University of Zurich Switzerland

This presentation is co-financed by the European Social Fund and the state budget of the Czech Republic.

INVESTMENTS IN EDUCATION DEVELOPMENT

Introduction

- Color represents 2 of 6 Bertin's visual variables (hue and value)
- In cartography there is a necessity to emphasize sufficient difference of visual variables
- What is the sufficient color difference?
- Color distance = metric, that allows to quantify perceived difference between two colors
- Demonstration: Small color distance:

Large color distance:

Background

- Measurement of color distance:
 - Human sensitivity to the light of different wavelenght fluctuates
 - CIELAB perceptually uniform color space
 - Standard illuminant D65 (dylight)
 - CIEDE2000 formula (E₀₀)

k	$\Delta E_{\min}(k)$	$\Delta E_{\max}(k)$	Perception of color difference	Q
1	0.0	0.5	Hardly	5
2	0.5	1.5	Slight	$5 - (\Delta \overline{E} - 0.5)$
3	1.5	3.0	Noticeable	$4 - (\Delta \overline{E} - 1.5)/1.5$
4	3.0	6.0	Appreciable	$3 - (\Delta \overline{E} - 3)/3$
5	6.0	12.0	Much	$2 - (\Delta \overline{E} - 6)/6$
6	12.0	24.0	Very much	$1 - (\Delta \overline{E} - 12)/12$
7	24.0	~	Strongly	0

TABLE 1: Subjective assessment metric based on CIEDE2000 Color difference.

Background

- Laboratory:
 - Remote eye-tracker
 - SMI RED 250

EO**CARTÓLINK**

Sampling Frequency 120 Hz

- Experiment design SMI Experiment Center
- Analyses SMI BeGaze, OGAMA, R Studio

Three experiments

- Common aim of experiments : discover how color distance of map elements (symbols, labels) influences their legibility
- Common hypotheses: increasing color distance will have positive impact on map legibility
- 1. color distance influence on labels legibility (on Wednesday)
- 2. color distance on choropleth maps
- 3. color distance and map legend

- **Goal:** How is the influence of color distance and viewing angle on users ability to distinguish categories of choropleth maps
- > 21 stimuli
- participants were asked to find two marked areas and decide if they are of the same color
- Stimuli parameters
 - ▶ 5 color scales with equal step between adjacent categories ΔE_{00} =2, 4, 6, 8, 10
 - 6 categories
 - 2 levels of viewing angles between compared areas 3-4°, 10-13°
 - only shades of green
 - Randomization of colors within stimuli
 - \rightarrow avoiding the negative effect of adjacent colors

 ΔE_{00} =2, viewing angle 10-13°

 ΔE_{00} =10, viewing angle 3-4°

 ΔE_{00} =10, viewing angle 10-13°

reduction of the number of independent variables to a minimum \rightarrow simplified stimuli not similar to real maps

- 38 volunteers with normal color vision
- 6 with tracking ratio less than 90% and calibration accuracy higher than 1° not included
- 13 males + 19 females (20 to 30 years)
- Students and employee of Palacký University

hypotheses

- increasing color distance will have an positive impact on overal legibility of choropleth maps
- we assume, that small color distance and large viewing angle between two compared areas will cause:
 - higher number of incorrect responses
 - Ionger time to find the answer
 - longer average fixation duration (indicates difficulty in extracting information)
 - higher frequency of fixations (less efficient search)
 - Ionger scanpath (less efficient search)
 - increasing number of AOI revisits

Incorrectness of responses

Color distance

CARTOLINK

This presentation is co-financed by the European Social Fund and the state budget of the Czech Republic. CZ.1.07/2.4.00/31.0010

Time to correct answer

- Eye-tracking metrics:
 - Fixation frequency, average duration, average scanpath length per second

No significant difference

Medial Fixation Duration [ms]

No significant difference

Medial Scanpath Length per second [px/s]

No significant difference

- Eye-tracking metrics:
 - average scanpath length per second

- Results:
- ΔE00=2 is not suitable for distinguishing categories of choropleth maps
 - the highest incorrectness of answers
 - the longest time to find the correct answer
- it is easier to distinguish color categories while there is a small viewing angle between them
 - less incorrect answers
 - shorter time to find the correct answer
 - slower scanpath (px/s)
 - (but this is not a surprise...)
 - And that is all...
 - No further differences observed

- Goal: How is the influence of color distance and position of the legend within the map sheet on users ability to distinguish categories of choropleth maps
- 40 stimuli, 12 participants (pilot testing)
- participants were asked to match marked area with the category in the legend
- Stimuli parameters
 - 5 color scales with equal step between adjacent categories ΔE00=2, 4, 6, 8, 10
 - 6 categories
 - 6 legend position
 - only shades of green

NEOCARTÓLINK

color distance

legend position

order of category in the scale

VEO**CARTÓLINK**

color distance

legend position

order of category in the scale

Average Fixation Duration [ms]

Average Scanpath Length [px]

Average Fixation Frequency [count/s]

180 175 170 165 160 2 4 6 8 10

Average Fixation Frequency [count/s]

Average Fixation Duration [ms]

Average Fixation Duration [ms]

- Results:
- highest incorrectness
 - matching colors in the middle of the color scale to the right category in the legend
 - ightarrow equal step of E00 is probably not the best option
- most time consuming
 - legend position #5
- eye-tracking metrics
 ???

General Findings

"Boring" scanpath – participants only compared marked areas, they did not gaze on surrounding areas

Low frequency eye-tracker + insufficient accuracy \rightarrow cannot consider small AOI

Future plans

- More complex task \rightarrow more interesting scanpath
- Bigger areas in the stimuli \rightarrow relevant AOI
- Chin rest \rightarrow higher accuracy of data

Thank you for your attention...

...and saccades

