

Instrument Integrity

Amy Lobben
University of Oregon

the process...

what are we studying?

various human constructs of geospatial cognition

how do we measure?

psychological assessment – performance test

what are our methods?

computer testing, participant observation, eye-tracking, neuroimaging

the process...

what are we studying?

various human constructs of geospatial cognition

how do we measure?

Psychological assessment – performance test

what are our methods?

computer testing (performance), participant observation, eye-tracking, neuroimaging

the process...

what are we studying?

various human constructs of geospatial cognition

how do we measure?

psychological assessment – performance test

what are our methods?

computer testing, participant observation, eye-tracking, neuroimaging

let's pose this one...

RQ: what environmental factors affect mental map encoding efficiency and effectiveness?

basically what we do...

- recruit participants
- balanced, randomized, true experimental design, ...
- walk participants through an environment
- ask them to make sketch map of the environment
- maybe add talk aloud protocol just for fun
- develop systematic, robust post-hoc verbal analysis protocol
- all sounds good!!

voila! research question answered.

voila! research question answered.

but, are we sure?

did we really measure the mental map?

response #1 – yes. i know this because i'm welltrained and really smart.

response #2 – yes. i know this because i assessed the reliability of the instrument.

basically what we do...

- recruit participants
- ask them to make sketch map
- woftherenvironment
- ask them to make sketch map of the environment maybe add talk aloud protocol just for fun
- de la state forestella, robust post-hoc verbal analysis protocol
- all sounds good!!

so, how do we assess the integrity of the measurement instrument (i.e. the reliability and validity of the sketch map and the talk-aloud protocol?

as designed...it's impossible

a word about reliability and validity

- reliabilty the consistency of a measure
- validity the "truthiness" of a measure

- consistency of scores obtained by the same person when examined with the same test on different occasions
- the interval, though, is important and should reflect test reliability and not behavior changes (i.e. 3 weeks versus 3 years)
- essentially reveals the extent to which differences between test scores are true differences or chance errors (not errors related to the test)
- several methods for assessing reliability
- the method you choose depends on the test and how it is designed and scored

test/retest

- exact same test administered twice, with systematic interval applied between test takers
- systematic interval:
 - depends on age of test taker (usually shorter intervals for younger test takers, longer for older)
 - depends on complexity of test (shorter intervals for more complex longer for simpler)
 - should rarely exceed 6 months
- test scores between sessions compared
- advantage: if conducted appropriately, can give potentially most accurate measure of reliability
- disadvantage: learning effects, remembering questions

test/retest

- in our example:
 - participants would perform the same walk through the environment and create the same mental map
 - probably a couple of months apart

reliability – 4 alternate form

- two forms of the test created
- administered in separate sessions over short interval
- direct comparison between scores
- higher correlation = better the reliability
- advantage: don't have question memory issue,
 can administer over shorter interval
- disadvantage: not the same test

alternate form

- in our example:
 - participants would perform a similar walk through a similar environment and create a similar mental map
 - shorter time interval even same day

split half

- one form of the test created
- administered in one session
- split test in sections
 - generally not good idea to split first half and second due to performance variation over the course of taking the test (fatigue...)
 - split by odd/even
 - but, must make sure that enough questions in each subject (i.e. if graphic is shown and questions relate to graphic, but have some odd and some even)
- direct comparison between scores
- higher correlation = better reliability
- advantage: one session, one test
- disadvantage: longer tests often better for this method

split half

- in our example:
 - participants would perform walk through many similar environments and create several mental maps
 - at least 10
 - probably odd/even split half

reliability – 8 internal consistency

- measures homogeneity of test items, i.e. how closely related a group of questions are
- useful if the questions are designed to measure the same construct
- if a multiple construct test is assessed, treat each "section" as different test for reliability analysis
- internal consistency is indicated by Cronbach Alpha score, closer to 1 is higher reliability, above .8 is good
- advantage: one test, one testing session
- disadvantage: only measures test consistency, not necessarily between session consistency

reliability – 9 internal consistency

- in our example:
 - participants perform walk through at least 3 environments and create mental map
 - one test session

interrater

- useful for both qualitative instrument and data analysis
- when open-ended questions are analyzed, a systematic scoring rubric should be developed
- multiple raters use the same rubric to analyze the same test taker's questions
- higher correlation between raters = higher reliability
- also useful for analyzing interviews; again, systematic coding sheet developed
- advantage: provides indication of post-hoc analysis reliability
- disadvantage: only provides indication of post-hoc analysis; not participant testing reliability

interrater

- in our example:
 - systematic coding scheme for evaluating mental map construction
 - at least two raters apply the scheme

basically what we do...

- recruit participants
- ask them to make sketch map
- woftherenvironment
- ask them to make sketch map of the environment maybe add talk aloud protocol just for fun
- de la state forestella, robust post-hoc verbal analysis protocol
- all sounds good!!

basically what we do...

- recruit participants
- ask them to make sketch map
- woftherenvironment
- ask them to make sketch map of the environment maybe add talk aloud protocol just for fun
- de ust foterfield, robust post-hoc verbal analysis protocol
- all sounds good!!
 it can be done, but is convoluted

- which do we choose in our example:
 - test/retest
 - alternate form
 - split half
 - internal consistency
 - interrater

- which do we choose in our example:
 - test/retest
 - alternate form
 - split half
 - internal consistency
 - interrater

- the extent to which a test actually measures what it is intended to measure
- as with reliability, validity can be measured and is reported with most available tests
- types of validity:
 - face validity
 - content validity
 - criterion validity
 - construct validity

face

- test taker's perception of what the test actually measures
- a judgment of the relevancy of the test
- example: a test that says it measures map use, but contains no maps may not be perceived as a true measure of map use by the test taker
- face validity can be measured:
 - focus group
 - questionnaire
 - interview

face

- in our example:
 - simple structured or semi-structured interview with each participant
 - "what do you think we were measuring"

content

- how well a test samples knowledge or behavior its designed to measure
- commonly associated with achievement tests
 - example 1: course final exam how well does a cumulative exam represent what was actually taught through the term?
 - example 2: employment test considered content valid if the test represents job-related skills required for employment

content

- Measuring content validity
 - common approach: use raters to evaluate each question:
 - "is the skill or knowledge measured by this item..."
 - Essential
 - Useful but not essential
 - Not essential
 - develop acceptable threshold
 - example if more than half of the raters judge the question as essential, the question passes the content validity test.

content

- in our example:
 - ask experts to participate in our experiment
 - semi-structured interview
 - focus group
 - "how well does our experiment capture participants' mental maps"

criterion

- how well a test score can be used to infer an individual's standing on some measure of interest (the criterion)
- criterion standard in which a judgment or decision may be based
- the process of establishing criterion validity involves comparing test results against a known criterion (either field measured behavior/activity/ability) or measured/ diagnosed from another source
- validity coefficient correlation coefficient that provides measure of the relationship between test scores and scores on the criterion measure

criterion

2 types of criterion-related validity

- concurrent validity
 - the test and validating the criterion measured (or available) at the same time
 - example 1: test A is explored relative to criterion B, where B is existing measure or some other indicator of criterion
 - example 2: field validation
- predictive validity
 - test scores taken at one point in time and criterion measured
 later maybe after an intervention
 - example: comparison of Freshman admission test to end-ofyear Freshman GPA (where GPA indicates academic success)

criterion

- in our example:
 - concurrent validity:
 - known test of mental mapping?
 - if looking at performance, maybe correlate with neuroanatomy (i.e. hippocampus tail or similar)
 - predictive validity:
 - compare mental maps to following field study in which participants are asked to conduct tasks related to mental map exercise

- a judgment about the appropriateness of inferences drawn from test scores for a variable (the construct)
- construct scientific idea that describes or explains a behavior
 - Example: Self-Location, intelligence, anxiety,...
- construct is intangible, researchers must formulate hypotheses about high and low scores on a test designed to measure the construct(s)
 - Example of contrasted (but somewhat related) constructs and test-based hypotheses: survey knowledge, route knowledge
- scientific activity and research is about finding evidence to support constructs

- how do you find evidence of construct validity- 1?
 - depends on the research question and experimental design, but several approaches can be considered:
 - evidence of homogeneity
 - appropriate approach if the assumption is that the test measures the same construct
 - the extent to which test items correlate with each other

- how do you find evidence of construct validity- 2?
 - evidence of changes with age
 - appropriate if the assumption is that performance on the construct changes with age
 - example: increase, then later decrease in spatial abilities throughout your life
 - can be measured either longitudinally (using same subject group) or by using different age groups then comparing scores; results should follow hypothesized patterns

- how do you find evidence of construct validity- 3?
 - evidence of pretest-posttest changes
 - should see measured, significantly different change as a result of an intervention
 - intervention can include: training, education, therapy, experience, medication
 - pretest, intervention, and posttest must be administered to each subject
 - direct comparison of scores

- how do you find evidence of construct validity –
 4?
 - convergent evidence
 - evidence that test results correlate with results from other known tests that are theorized to be related
 - discriminant evidence
 - evidence that test results are not statistically related to construct theorized not to be related
 - factor analysis
 - can be used to conduct an internal test of convergent and discriminant evidence

- in our example:
 - convergent evidence: sketch maps correlate with field performance and also indicate environmental effects

basically what we do...

- recruit participants
- ask them to make sketch map
- woftherenvironment
- ask them to make sketch map of the environment maybe add talk aloud protocol just for fun
- de la state forestella, robust post-hoc verbal analysis protocol
- all sounds good!!

basically what we do...

- recruit participants
- ask them to make sketch map
- woftherenvironment
- ask them to make sketch map of the environment maybe add talk aloud protocol just for fun
- de ust foterfield, robust post-hoc verbal analysis protocol
- all sounds good!!
 it can be done, but is convoluted

validity

- which do we choose in our example:
 - face validity
 - content validity
 - criterion validity
 - construct validity

validity

- which do we choose in our example:
 - face validity
 - content validity
 - criterion validity
 - construct validity

**AND control for confounding variables

another example:

reliability analysis:

- internal consistency
 - computer-administered behavioral testing
 - 5 test sections, 5 measures of internal consistency

validity analysis (behavioral):

- Significant differences in reaction time by difficulty level within tasks (all p's < 0.001)
- Faster response times when differences in numeric and cartographic scale & magnitude are larger
- Results are consistent with previous research that identified task and difficulty level differences (Kadosh et al. 2005)
 - concurrent criterion validity

validity analysis (neuro):

- A total of 240 images were shown over 5 runs (48 images per run)
 - 24 images for each condition (12 for each difficulty)
 - Eliminated middle difficulty level (focused on easy vs. hard)
- Participants viewed a stimuli pair and reported which of the two images was larger
- Differences in BOLD were used to indicate encoding of scale and magnitude
 - Data from numerosity & number size used as localizer for map data again, looking for concurrent criterion validity

validity analysis (neuro): criterion

- Previous research suggests that the IPS and the SPL are involved in numerical and physical magnitude comparisons (Dehaene et al., 2003; Kadosh et al., 2005)
- We have replicated previous findings by showing that magnitude comparisons of number value and number size activate the IPS & SPL

validity analysis (neuro): criterion

• Considerable overlap in the neural substrate between numerical, scale and magnitude comparison tasks Large overlap in the IPS & SPL between the three tasks Scale and magnitude tasks differentially activate a region in the LOC and PFC/FP Regions have previously been implicated in object recognition cognitive branching

validity analysis (neuro): construct

validity analysis (neuro): construct

•A whole brain analysis that contrasted task difficulty for maps revealed distinct networks for the magnitude condition with some overlap between scale and magnitude tasks

your challenge...

- design a protocol that does the following:
 - identifies the most effective substrate for tactile map symbols
 - 15 map symbols
 - 3 substrates
 - many facilitators