
L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 1

Last week

• We needed to extend the relational model to handle space

– Geometry attributes (Geometry objects, reference systems)

– Spatial relationships (strong relationship, nothing, topologically)

– Spatial methods for (efficient) spatial queries (supported by spatial

indexes)

• We modeled spatial data with object-relational DBMS

– We looked at different possibilites to model spatial entities

• We discussed standardisation

– This showed us many aspects of geometry types implemented in

spatial databases

• We mentioned Simple Features

– Base standard that defines all the geometric 'things' we can use in a

spatial database

| Introduction to Spatial Databases

Geo875 | FS24

University of Zürich

2. Lecture Spatial Databases

Spatial Data Types (in depth)

Rolf Meile

Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL)
Swiss Federal Institute for Forest, Snow and Landscape Research

Zhiyong Zhou

Dept. of Geography, University of Zürich

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 3

Learning Objectives

✓ Gain deeper understanding of how spatial data types are
implemented and used accross database technologies

✓ We get an idea how basic spatial entity types of an ER can
be modeled and then be transfered to a spatial database

✓ We try to get a deeper insight to the opensource system
consisting of PostgreSQL with PostGIS

✓ Understand that creating and storing geometries is not
trivial: we need constructors, spatial reference systems, and
we need validity checks

| Learning Objectives

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 4

Overview

|

1. Spatial extensions to relational databases

1. PostGIS in conjunction with PostgreSQL

2. Esri ArcSDE + databases

3. Oracle Spatial an extension to Oracle database

2. From ER to spatial tables – a case study

3. PostGIS and PostgreSQL particulars

4. Geometry creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Spatial extensions to relational databases

5 | Spatial Extensions

• Extensions handle all aspects of geometries and others

• Spatial databases therefore support:

– Spatial attributes – spatial data types (vectors, topology, rasters)

– Spatial methods, functions

– Spatial indexes

• Extensions (different products) are similar in a users

perspective; but be aware of details;
– PostGIS: ST_Contains(geomA, geomB) vs. ST_ContainsProperly(geomA, geomB)

• Only standards guarantee interoperability between systems;

see last lectures industry-standards OGC/ISO SQL/MM aka

'Open GIS'; example: ST_Contains(geomA, geomB);

• A myriad of geo functions alongside of standards

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Spatial extensions to relational databases

6 | Spatial Extensions

Ways of installation are different

a) Software installed through the client ArcCatalog (ESRI)

b) Just an option when installing the DBMS (Oracle)

c) Package installation in addition to DBMS (PostGIS); apt / yum;
Activating is needed for each database you create within your DBMS installation

CREATE DATABASE mypersonaldb; -- our course db was

named geodb

CREATE EXTENSION postgis;

SELECT postgis_full_version(); -- check

installation, detailed version information

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Handling geometries using PostGIS

7

• PostGIS under the umbrella of the OSGeo foundation

– Extension to PostgreSQL database;

– Expressed in the public schema; thus available to all users;

– Extends pure PostgreSQL database with spatial data types, indexes,

functions and methods;

– Optimized for integration with QGIS and other open source clients and

servers (MapServer); works well with commercial products, too;

– Offers functionality - server side - through incorporated open-source libraries

• Proj4: Provides projection support

• Geometry Engine Open Source (GEOS): Advanced geometry-processing support

• Geospatial Data Abstraction Library (GDAL): Provides many advanced raster

processing features

• Computational Geometry Algorithms Library (CGAL/SFCGAL): Enables advanced 3D

analysis

– Create your own stored (geo-)functions

– It's all free and open-source

• More details in the chapter after next

| Spatial Extensions

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Handling geometries using ArcSDE

8

• ESRI ArcSDE (part of ArcGISServer)

– Proprietary plugin for Oracle, DB2, Informix, and PostgreSQL;

– Expressed as the DB user SDE (schema SDE);

– Extends vanilla databases with spatial data types, indexes, functions and

methods;

– Manages/stores the spatial data of other users

– Optimized for integration with ESRI GIS products (Desktop ArcGIS, Web,

Catalog,…);

– It’s not free but often used in large organizations

• Feature class: the logical/physical equivalent of a spatial table:

homogeneous attributes and one single type of geometry;

• Feature dataset: holds a number of related feature classes with the

same spatial extent, coordinate system, resolution, for storing

topologies, networks, TINs... – e.g., optical fiber network with nodes and

edges

| Spatial Extensions

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Looking at ArcSDE stored data in an Oracle DB

9

• ArcGISPro

– Looks pretty much the same

as in a file-geodatabase

– Same wordings: feature class,

feature datasets, etc.

| Spatial Extensions

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

ArcSDE Geometry storage integration

10

Three storage data types supported by ArcSDE

1. As SDE.ST_Geometry (ADT)

• Close to the SF standard; recommended/implented by ESRI;

• Can be used in all databases (good support by ESRI products)

• Geometries retrievable through SQL, incl. spatial queries

2. As MDSYS.SDO_Geometry (ADT)

• Close to SF standard; Uses Oracle’s data type although ESRI

integration;

• Can visualize data using ESRI products;

• Can use Oracle products for modeling and management;

• Requires Oracle and ESRI licenses

3. As BLOB:

• Old but stable, performant, legacy; No querying using SQL;

• Complicated integration in the background

• Geometries only retrievable using ESRI products (vendor lock-in)

| Spatial Extensions

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

ArcSDE Geometry types

11

Points PolygonsLines

Line
Bézier curve

Circular arcElliptical arc

Multipoint

Point

Mulitpart polyline

Single-part polyline

Path

Multipart polygon

Single-part polygon

Ring

| Spatial Extensions

Special feature: Storing Bézier curves and elliptical arcs

Additional geometry types: TINs, Raster

Software topology implemented

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Handling geometries using Oracle Spatial

• Oracle Spatial

– MDSYS.SDO_Geometry is the vector data type

– A wrapper is used for all SDO_Geometries and methods

(MDSYS.ST_Geometry), introducing compatibility with the standards

– Good support by commercial products (GeoMedia, ArcMap) but also

by QGIS and others

– It’s not free but used in industry systems

• Topology, Rasters, Metrics supported, too

• Implementation is very ‘close’ to the DB (as PostGIS is)

• Used to be one of the first spatial databases

12 | Spatial Extensions

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 13

Overview

|

1. Spatial extensions to relational databases

1. PostGIS in conjunction with PostgreSQL

2. Esri ArcSDE + databases

3. Oracle Spatial an extension to Oracle database

2. From ER to spatial tables – a case study

3. PostGIS and PostgreSQL particulars

4. Geometry creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

ER model to tables

14 | From ER model to spatial DB

How do I get my (spatial) tables?
Simple use case with one to many relationship with weak entity type:

– „Each parcel can consist of one or more parcel polygons.“

– „Each parcel polygon must belong to exactly one parcel.“

Remember: modeling multi (-polygons, …)

– This example thinks the singlepart way; separating semantics from
geometries;

Geom

ParRefDat

PARPOLY
ParPolyID

PARCEL

ParRefText

ParID

Consists of

1

M

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 15

Exercise 1

| From ER model to spatial DB

parid parreftext parrefdat

parcel

parpolyid parid geom

parpoly Foreign Key plus Primary Key

Primary Key

Provide the relations for the ER model of the previous slide (on
paper/screen). Rules of geo874 apply...

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Overview of the ER to DB process

16 | From ER model to spatial DB

1. ER-Model with spatial entity type

3. Physical DB model

parpoly

parpolyid(PK) integer

parid(PK) integer

geom geometry(polygon,2056)

7. Digitise/insert (spatial)

data with QGIS or SQL

parcel

parid (PK) integer

parreftext varchar(250)

parrefdat timestamp

p
a

rp
o

ly
_

p
a

rc
e

l_
fk

4. Define tables parcel and parpoly

with SQL

5. Import external spatial data to a

temporary spatial table ‘as is’

Geom

ParRefDat

PARPOLY
ParPolyID

PARCEL

ParRefText

ParID

Consists of

1

M

2. Derive relations
(adhoc exercise)

6. Transfer data from your

temporary spatial table to

parpoly with SQL (with

transformations!)

parcel_pk

parpoly_pk

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

parcel

parid (PK) integer

parreftext varchar(250)

parrefdat timestamp

geom geometry(multipolygon,2056)

17

Exercise 2

| From ER model to spatial DB

parcel_pk

If we had modeled the parcel as a spatial entity type with geometry
subtype having multiple polygons. How would our ER -> relations ->
database structures look like?

Short discussion

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 18

Overview

|

1. Spatial extensions to relational databases

1. PostGIS in conjunction with PostgreSQL

2. Esri ArcSDE + databases

3. Oracle Spatial an extension to Oracle database

2. From ER to spatial tables – a case study

3. PostGIS and PostgreSQL particulars

4. Geometry creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

PostGIS Geometry storage

• Geometry type (planar)

– Cartesian math

– Subtypes for more constraining getting more data integrity: POINT,

LINESTRING, LINESTRINGZ, LINESTRINGM, MULTIPOLYGON,

GEOMETRYCOLLECTION, POLYHEDRALSURFACEZ, TINZ, not all listed

• Geography type (spherical)

– Lines and polygons are drawn on the earth's curved surface

– for lat/lon usage

– only WGS84 as spatial reference system available

– not all PostGIS functions work on geography

• Raster type (multiband cells)

– Space as grid with rectangular cells

• Topology

– World as a network of connected nodes, edges and faces with

common borders

19 | PostGIS and PostgreSQL Particulars

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

PostGIS beyond storage

• Spatial indices

– no spatial table without a spatial index; you have to do it!

– main implementation is fast and named GiST (a R-Tree derivate); B-

tree also available;

– make sure you create or have a spatial index if you own a table with

a spatial attribute:
CREATE INDEX idx_restaurants_geom ON restaurants

USING gist(geom);

– but: sometimes they're created automatically; e.g. while importing

with QGIS, but not always, please check;

– full lecture on all the whys and details coming up

20 | PostGIS and PostgreSQL Particulars

https://gistbok.ucgis.org/bok-topics/spatial-indexing 2D 3D

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

PostGIS beyond storage cont.

• Transformation and reprojection

– remember: built in libraries

– Example: Reproject a spatial table (mytable) with a subtyped

column named geom of type

geometry(MultiLineString,21781)

-> the column gets a (new) subtype with a new SRID, respectively

-> all records inside get reprojected

-> watch out: GUI tools sometimes only show main types; see FAQ for a solution

-- this converts it all (table physically changed/stored)

ALTER TABLE user50.mytable

ALTER COLUMN geom TYPE geometry(MultiLineString,2056)

USING ST_Transform(geom,2056);

-- on the fly reprojection in a query (nothing stored!)

SELECT ST_Transform(geom,2056) AS geom_trsfrmd

FROM user50.my_unprojected_21781_table;

21 | PostGIS and PostgreSQL Particulars

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Limitations

• Geodetic support

• Handling curves limited and not complete

• Topology ?

• pgRouting ?

• Z-value handling

• 3D space living features like polyhedral surfaces and tins

But: it gets incredibly better with each release, e.g.

 ST_FrechetDistance (geometry1, geometry2, float densifyFrac) v2.4

ST_ChaikinSmoothing(geometry, nIterations, preserveEndPoints) v2.5

 ST_GeneratePoints(geometry, nPoints) v3.0

• version 3.5 is now current

ST_ReducePrecision(geometry, precision) v3.1

22 | PostGIS and PostgreSQL Particulars

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 23

Overview

|

1. Spatial extensions to relational databases

1. PostGIS in conjunction with PostgreSQL

2. Esri ArcSDE + databases

3. Oracle Spatial an extension to Oracle database

2. From ER to spatial tables – a case study

3. PostGIS and PostgreSQL particulars

4. Geometry creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

How to generate geometries?

• How does a new spatial table look like?

– we have a spatial attribute of at least type geometry

– better: subtyped with srid to constrain the geometries we will later

insert into that table

• What is in the spatial table? Probably nothing yet…

a) We could import geometries and use functions that convert these

'external' geometries to our geometry type (work done by external

apps: QGIS, GDAL, other tools)

b) We could transfer, transform or cast geometries already in the DB

(staging/temporary) to our destination spatial table; (work done by

SQL in the database)

c) We can digitize geometries having the spatial database table

(layer) editable in QGIS

d) We can construct our geometries 'by text' with SQL, but how?

24 | Geometry Creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Geometry construction

25

• SQL: with a constructor you can 'make a thing of a desired

type' from scratch; in the end using simple base types;

• Recall similiar things:

– entity type vs. instantiated entity

– object-oriented programming: type vs. object

• Some samples without geometry:

– construct an object of simple base type like number, string: 345, 4

or 'hey you'. What about object Rolf ? Not as simple...

– construct an object of type lecturer; create_lecturer('Rolf') results

in object Rolf ; need a function that hiddenly does the job for me!

– construct an object of type timestamp fn(parameters)
make_timestamp(year int, month int, day int, hour int, min int,

sec double precision)

Example:

SELECT make_timestamp(2024, 11, 15, 9, 17, 43);

| Geometry Creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Geometry construction cont.

26

• Construct an object geometry type fn(representation_geometry)

• Different possibilities to get (aka serialize) a geometry:

– fn1(text representation)

– fn2(binary representation)

– fn3(existing geometry to be morphed, split, ...)

• Examples
1.SELECT ST_GeomFromText('POINT(-100 28 1)',4326);

SELECT ST_GeomFromText('POLYGON((10 28 ,9 29 ,7 30

,10 28))');

2.SELECT

ST_GeomFromWKB(E'\\001\\001\\000\\000\\000\\321

\\256B\\312O\\304Q\\300\\347\\030\\220\\275\\336%E

@',4326); -- E' safely escaping \ backslash

3.SELECT ST_Centroid(ST_GeomFromText('POLYGON((10

28 ,9 29 ,7 30 ,10 28))'));

| Geometry Creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Geometry construction cont.

27

• More possibilities to serialize (to get a geometry) available
– ST_GeomFromGML()

-- Geography Markup Language

– ST_GeomFromGeoJSON()

-- Geography Javascript Object Notation

– ST_GeomFromKML()

-- Keyhole Markup Format

• Deserialize: from geometry type to a different format (type)

– gml, geojson, kml...

– ST_AsGML(), ST_AsGeoJson(), ST_AsKML() and of course

ST_AsText or ST_AsEWKT()

| Geometry Creation and SRID

Why serialize?

• We need to fit geometries into the typed (defined) column of the spatial table by using 'simpler' types

Why deserialize?

• Query spatial information out of the database in a desired/readable format

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

Example initialisations - real world

28

• Polygon based on (well-known) text and srid
SELECT ST_GeomFromText('POLYGON ((2682180 1235646,

2682799 1234338, 2686473 1235082, 2684750 1237992,

2682780 1240320, 2680160 1236665, 2682180

1235646))',2056);

• Line
SELECT ST_GeomFromText('LINESTRING (2682580 1235699,

2682799 1234338)',2056);

• Point
SELECT ST_GeomFromText('POINT (2682580

1235699)',2056);

| Geometry Creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

How do we get and store values of the vertices?

29

• Using SQL: Type the numbers/text of the WKT-

representation; tedious..., but easy for points

• GUIs do the same with a lot of 'hidden' steps

– Mouse/Screen coordinate system

– Browser: HTML & Javascript Libraries

– Browser: Screen to real-world coordinates calculations; geometry info

– Browser: Sending to web server (application running there)

– Web server: Application opens connection

to database server

– Web server: Transforms the geo information

from browser to SQL(!)

– Web server: Stores the data in a spatial table

• QGIS for digitalising directly on spatial

database tables

| Geometry Creation and SRID

Webapplication geoadmin.ch

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 30

Exercise 3

a) Provide the code to construct a Polygon of type geometry
representing a triangle with the coordinates 4,5 and 7,8 and 10,4 in
an undefined coordinate system (on paper/screen).

b) Provide the code to construct a Line with the coordinates 4,5 and
7,5 8,9 3,8 also in an undefined coordinate system (on paper/screen).

| Geometry Creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich

SRID: Spatial Reference ID

Geometry constructors ask for SRID – what is it exactly?

31

• SRID: Spatial Reference System ID. Values should match values in a
table available in the public schema (comes with installation).

- Switzerland's new 'CH1903+_LV95' has SRID = 2056

- Switzerland's old 'CH1903_LV03' has SRID = 21781

- Query the information:

SELECT sr.* FROM public.spatial_ref_sys sr WHERE

sr.srid=2056;

• These values are standardised as EPSG codes.

• See www.epsg.org

• https://spatialreference.org/

• Own values could be added

| Geometry Creation and SRID

http://www.epsg.org
https://spatialreference.org/

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 32

Exercise 4

Note the differences in the values for this polygon definition. Discuss

with your neighbour, go online and find out:

• Why do we here have so many brackets in SELECT
ST_GeomFromText('POLYGON((8 47,10 30,10 10,30

5,45 20,8 47),(30 20,20 15,20 25,30 20))',

4326)?

• What does 4326 stand for? Find its textual definition.

• What are the values in e.g., 8 47 representing?

• Is this a real-world example?

| Geometry Creation and SRID

L2 | Spatial Data Types Geo875 | Spatial Databases | FS24

Z. Zhou, R. Meile, Univ. of Zurich 33

Summary

• We have discussed different products that can store spatial

data in databases

• Geometries require the specification of geometry types; for

constructing we need vertices in text form and spatial

reference systems

• We need functions to create geometries/geometry objects

• We took a more detailed look at PostGIS and layed out

different spatial data types that can be stored with this data

extension

| Summary

	Slide 1: Last week
	Slide 2: 2. Lecture Spatial Databases Spatial Data Types (in depth)
	Slide 3: Learning Objectives
	Slide 4: Overview
	Slide 5: Spatial extensions to relational databases
	Slide 6: Spatial extensions to relational databases
	Slide 7: Handling geometries using PostGIS
	Slide 8: Handling geometries using ArcSDE
	Slide 9: Looking at ArcSDE stored data in an Oracle DB
	Slide 10: ArcSDE Geometry storage integration
	Slide 11: ArcSDE Geometry types
	Slide 12: Handling geometries using Oracle Spatial
	Slide 13: Overview
	Slide 14: ER model to tables
	Slide 15: Exercise 1
	Slide 16: Overview of the ER to DB process
	Slide 17: Exercise 2
	Slide 18: Overview
	Slide 19: PostGIS Geometry storage
	Slide 20: PostGIS beyond storage
	Slide 21: PostGIS beyond storage cont.
	Slide 22: Limitations
	Slide 23: Overview
	Slide 24: How to generate geometries?
	Slide 25: Geometry construction
	Slide 26: Geometry construction cont.
	Slide 27: Geometry construction cont.
	Slide 28: Example initialisations - real world
	Slide 29: How do we get and store values of the vertices?
	Slide 30: Exercise 3
	Slide 31: SRID: Spatial Reference ID
	Slide 32: Exercise 4
	Slide 33: Summary

