
Department of Geography

GEO 812
Getting started with R for Spatial Analysis

Session 3: Programming in R
Peter Ranacher

September 2019

GEO 812 | Peter Ranacher | September 2019

Learning objectives for Session 3

You are able to

 explain loops and understand when not to use them in R

 use conditional statements

 work with functionals

 create your own functions, test and debug them

2

GEO 812 | Peter Ranacher | September 2019

A simple task:

Compute the mean for every column in msleep, but only if the column contains

numeric data.

The very, very naïve approach:

colnames(msleep) get all column names

is.numeric(msleep$name) first column is not numeric

is.numeric(msleep$genus) second column is not numeric

…

is.numeric(msleep$sleep_total) TRUE!! We found a numeric column.

mean(msleep$sleep_total) Compute the mean

…

is.numeric(msleep$bodywt) We found the last numeric column.

mean(msleep$bodywt) Compute the mean

3

GEO 812 | Peter Ranacher | September 2019

Reduce copy-pasting in your code whenever possible

- easier to see the intent of your code

- easier to respond to changing requirements  only change code in one place

- fewer bugs, since each line of code is used in more than one place

Rule of thumb: Never copy-and-paste more than twice!

4

GEO 812 | Peter Ranacher | September 2019

Rewrite the task in a more generic way

1. Go through all columns in the tibble.

2. If the element is numeric, compute the mean.

If not, don’t do anything.

5

What is 1?
What is 2?
What are 1 and 2 combined?

LOOP

CONDITIONAL STATEMENTFU
N

C
TI

O
N

GEO 812 | Peter Ranacher | September 2019

Conditional statements: if



IF the CONDITION is TRUE CONSEQUENCE

CONDITION: a logical expression that is either TRUE or FALSE

CONSEQUENCE: code executed when condition is TRUE

Example:

x <- -7

if (x < 0) {cat(x, "is negative")}

6

Q: What is cat() ?
A: Concatenate and print.

GEO 812 | Peter Ranacher | September 2019

Conditional statements: else

IF the CONDITION is TRUE CONSEQUENCE

ELSE  ALTERNATIVE CONSEQUENCE

ALTERNATIVE CONSEQUENCE: code executed when condition is FALSE

Example:

x <- 8

if (x < 0) {

cat(x, "is negative")

} else if (x == 0) {

cat(x, "is null")

} else {

cat(x, "is positive")

}

7

What does else if do?

GEO 812 | Peter Ranacher | September 2019

Operators for comparison

8

Operator for comparison description

== equal

!= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

Always use || and && to combine logical expressions and never | and &

x <- 0.6

if (x > 0 && x < 4) {

cat(x, "is positive and smaller than four.")

}

GEO 812 | Peter Ranacher | September 2019

Functions for comparison

9

Function description

any (x) Given a set of logical vectors is at least one of the values true?

all (x) Given a set of logical vectors, are all of the values true?

is.numeric(x)

is.character(x)

…

TRUE if x is of type numeric / character

Example:

x <- c(-1, -3, -6, 8, 9,5)

if (any(x > 0)) {

cat("Some numbers in ", x, " are positive.")

}

GEO 812 | Peter Ranacher | September 2019

Loops

 for loops

run a code block a certain number of times, e.g. for each column in a tibble

 while or conditional loops

run a code block until a certain condition is met

10

GEO 812 | Peter Ranacher | September 2019

for loops

Example: a loop to calculate the cube of numbers 1 to 5

x <- 1:5

output <- vector("double", length(x))

for (i in 1:5){

i_cubed <- i * i * i

output[[i]] <- i_cubed

}

- Output:

empty vector to allocate space for output. Important for efficiency!

- Sequence:

determines what to loop over

- Body:

code that it is repeated

11

output

sequence

body

GEO 812 | Peter Ranacher | September 2019

while loops

while – condition is evaluated at the beginning

repeat – condition is evaluated at the end (loop is at least entered once)

Example: square all numbers smaller than 100

i <- 1

while (i < 100) {

i_squared <- i * i

output[[i]] <- i_squared

i <- i + 1

}

12

Why is the output not defined before entering the loop?

condition

body

GEO 812 | Peter Ranacher | September 2019

To loop or not loop?

 loops offer a good view on what is supposed to happen

 require an understanding of the data and the process you want to carry out, BUT

KNOW your loops and try to GET RID of them whenever possible!

Two approaches to get rid of loops:

 Vectorization

 Functions and functionals (apply family)

13

GEO 812 | Peter Ranacher | September 2019

Vectorization

Add vectors A and B:

A <- c(1, 2, 4, 1)

B <- c(2, 1, 5, 1)

Loop over elements of vector:

C <- vector("double", length(A))

for (i in 1:length(A)){

C[i] <-A[i] + B[i]

}

Vectorization:

C <- A + B

14

NO!

NO!

NO!

YES!

NO!

NO!

repeated operations on simple numbers
 single operations on vectors

GEO 812 | Peter Ranacher | September 2019

Functions to get rid of loop

What was the average age of passengers on the Titanic?

summed_age <- 0

n <- length(na.omit(titanic_survival$age))

for (i in titanic_survival$age){

if (!is.na(i)) {

summed_age <- i + summed_age}

}

summed_age / n

Any time you think you have to do a loop in R….

… look if there is a function that can do the same operation WITHOUT a loop!

mean(titanic_survival$age, na.rm = TRUE)

15

NO!

NO!

NO!

NO!

YES!

GEO 812 | Peter Ranacher | September 2019

Functionals

function that takes a function as an input and returns a vector as output

lapply()

- takes a vector and a function as input

- calls the function for each element of the vector

- returns a list as a result

Example: lapply() over list

data_list <- list(msleep, titanic_survival)

lapply(X = data_list, FUN = is.data.frame)

Example: lapply() over columns of a data frame

lapply(msleep, is.character)

16

Run sapply(msleep, is.character)
How does it differ from the lapply() result?

GEO 812 | Peter Ranacher | September 2019

Functionals continued

apply()

- takes a matrix and a function as input

- calls the function for each row (MARGIN=1)

or column (MARGIN=2) of the matrix

- returns a vector

apply(X = msleep, MARGIN = 2, FUN = max, na.rm = TRUE)

17

Check the type of the output!
Why is it "character"?

GEO 812 | Peter Ranacher | September 2019

Exercise 5
1. Run the following code for n = m = 10 and for n = m = 10000. Explain what

you observe!

A <- matrix(data = rnorm(n * m), nrow = n, ncol = m)

Vectorization

system.time(A^2)

Loop

system.time(for (i in 1:n){

for (j in 1:m){

A[i, j] <- A[i, j]^2

}})

2. Use functions from the apply family to

- get all numeric columns of msleep (hint: use sapply())

- compute the mean for all numeric columns (hint using indexing first!)

18

rnorm(x) generates x random
numbers that follow a normal distribution
with mean = 0 and standard deviation = 1.

GEO 812 | Peter Ranacher | September 2019

Writing your own functions

19

A function to calculate the cube root of a number

cube_root <- function(nr_to_cube)

{

result <- nr_to_cube ^ (1/3)

return(result)

}

Call!
cube_root(1000)

What does the function do?

function name

What does the function return?

argument(s)

GEO 812 | Peter Ranacher | September 2019

There is a problem with the function we’ve just defined….

cube_root(1000) OK

cube_root(-1000) NaN (^ only works for positive bases)

cube_root("Busta Rhymes")

20

GEO 812 | Peter Ranacher | September 2019

Data checking

Make sure that the data given to the function are of the right type!

21

cube_root <- function (x){

if (!is.numeric(x)) {stop("x must be a

number")}

else {

if (x >= 0) {result <- x ^ (1/3)}

else {result <- -(-x)^(1/3)}

return (result)}}

Check if input is numeric

Check if input is > 0

GEO 812 | Peter Ranacher | September 2019

Debugging

What to do when a function you wrote

 does not work

 produces the wrong results

Have a look at the function!

debug(cube_root)

cube_root("Busta Rhymes")

Enter a variable: show the value of the variable

Stop entering the debug mode

undebug(cube_root)

22

GEO 812 | Peter Ranacher | September 2019

Read the data collected in class

stats_geo812 <- read.csv(file = "data/stats_geo812.csv",

header = T, sep = ",")

23

GEO 812 | Peter Ranacher | September 2019

Exercise 6

1. Write a function d_great_circle to compute the great-circle distance (d) between two

points on the Earth surface. This is the formula for d:

It takes as input the latitude (𝜑) and longitude (𝜆) of two locations on the Earth surface and the

Earth radius r. You can set r to 6371 km.

- Perform data checking (is the input numeric, is it a valid latitude/longitude?)

- In R, cos()and sin()take radians as input! This function helps you with the conversion:

deg2rad <- function(deg) {(deg * pi) / (180)}

2. Compute the distance from Zurich (𝜑 = 47.3686498, 𝜆 = 8.5391825) to your holiday locations

(holidays_lat, holidays_lon) in stats_geo812.

- Use mutate() rather than apply(). Why?

24

d

GEO 812 | Peter Ranacher | September 2019

Learning objectives revisited

You are able to

 explain loops and understand when not to use them in R

 use conditional statements

 work with functionals

 create your own functions, test and debug them

25

