

Department of Geography

GEO 812 Getting started with R for Spatial Analysis

Session 1: Data exploration

Peter Ranacher September 2019

Learning objectives

You are able to

- perform basic operations in R
- visualize data
- transform and explore data

What is programming?

Giving a sequence of instructions to perform a specific task on a computer

What is R?

- Programming language and software environment for statistical analysis
- Super popular in science
- Open, independent and free

The architecture of R

http://www.ats.ucla.edu/stat/r/seminars/intro.htm

Your interface to R: Welcome to R studio!

Before we start...

Create a new project

Open a new R script

🗷 R	Studio)						
File	Edit	Code	View	Plots	Session	Build	Debug	
	New File							
	New I	Project						
	Open	File			Ctrl+	0		
	Recen	t Files					•	
	Open	Project	t					
	Open	Project	in Nev	w Sessi	on			
	Recent Projects							
	Import Dataset							

RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

New File			R Script	Ctrl+Shift+N	
New Project		R Notebook			
Open File Recent Files	Ctrl+O	•	R Markdown Shiny Web App		
Open Project Open Project in New Session. Recent Projects	•	Text File C++ File			
Import Dataset	•	R Sweave R HTML			
Save	Ctrl+S		R Presentation		
Save As			R Documentatio	n	

Coding Basics

R can be used as a calculator

(3 + 15)/6 sin(pi / 2)

R can create new objects

Where do I write code?

A quick look at the R environment

Includes all the user-defined objects

(functions, data, values, ...)

List all the objects in the workspace ls()

Remove a particular object

rm(y)

Naming things in R

Names

- consist of a combination of letters, numbers and _ and .
- must start with a letter
- are case sensitive

some name≠Some Name≠SOME NAME

Specify arguments by complete name

seq(from = 1, to = 10)

Assign output of a function to an object

$$x < - seq(1, 10, by = 2)$$

How are arguments specified in seq(1, 10)?

The tidyverse

Collection of R packages for data science

Common design philosophy, grammar, and data structure

Tidy? \rightarrow work in harmony!

The msleep and TitanicSurvival data

msleep

Sleep times and weights of 83 mammals part of the tidyverse data

```
install.packages("carData")
```

```
library(carData)
```

```
TitanicSurvival
```

Survival status of the 1309 passengers of the Titanic

Try ?msleep and ?TitanicSurvival

Data frames

Rectangular collection of observations (rows) and variables (columns) Entries in one column are of the same type (e.g. integer, character)

Keep your data frames tidy!

- 1. Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

Tibbles

Equivalent of data frames in the tidyverse

Only small differences, eg.:

- no row names in tibbles,
- better suited for previewing large data sets

From data frame to tibble

titanic survival <- as tibble(TitanicSurvival)</pre>

From tibble to data frame

```
as.data.frame(msleep)
```


Plotting tibbles with

What does the warning message mean and why does it appear?

Aesthetic mappings

Aesthetic = a visual property of the objects in the plot, for example

color, siZe, alpha

```
column in the data set
mapped to color

ggplot (data = msleep) +
geom_point (mapping = aes(sleep_total, sleep_rem, color = vore))

Mapping to size
ggplot (data = msleep) +
geom_point (mapping = aes(sleep_total, sleep_rem, size = bodywt))
```

Bar charts

adds a bar chart to the plot ______ggplot(data = titanic_survival) + geom_bar(aes(x = passengerClass))

geom_bar

- performs a statistical transformation and counts the number of entries per passengerClass,
- and then plots these counts

Position adjustments

```
Map the same variable to fill → different colors for each bar
ggplot(data = titanic_survival) +
geom_bar(mapping = aes(passengerClass, fill = passengerClass))

Map another variable to fill → stacked color bars!
ggplot(data = titanic_survival) +
geom_bar(mapping = aes(passengerClass, fill = survived))
```


Add position = "dodge" as an argument to geom bar

Exercise 1

- Show the relationship between body and brain weight in the msleep data. Use different symbols (shape) to reflect the diet (vore). What do you observe?
- 2. What is wrong (or at least unexpected) with this code? Try to fix it!
 ggplot(data = msleep) + geom_point(mapping = aes(sleep_total,
 sleep_rem, color = "blue"))
- 3. Plot the variation in the column sleep_total for each vore using the function geom_boxplot. Check out ?geom_boxplot if you need to understand the function. Which eating habit corresponds to the lowest variation in total sleep?

Transforming tibbles with

We

- filter() observations by their values
- arrange() the rows and order the observations
- select() variables by their names
- mutate() the data and create new variables from existing ones
- collapse many values down to a single value and summarise() the data

We do the above either on the entire dataset or group_by()-group.

filter() observations

Select rows by value

filter(titanic_survival, age >= 25)

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

survived	sex	age	passengerClass
yes	female	29	1st
no	male	30	1st
no	female	25	1st

Operators for comparison and logical operators

Operator for comparison	description
==	equal
!=	not equal
<	less than
<=	less than or equal
>	greater than
>=	greater than or equal

Logical operators	description
á	logical AND
	logical OR
!	logical NOT

Combining filters with logical operators

```
logical OR
filter(msleep, vore == "carni" | vore == "omni")
logical AND
filter(msleep, vore == "carni" & sleep_total > 11)
filter(msleep, vore == "carni", sleep_total > 11)
```

Remove all rows with missing values (for one variable!)

```
filter(msleep, !is.na(sleep_rem))
```


Try na.omit(msleep)

arrange() the observations

Change the order of the rows

arrange(titanic_survival, age)

survived	sex	age	passengerClass	survived	sex	age	passengerClass
yes	female	29	1st	yes	male	1	1st
yes	male	1	1st	no	female	2	1st
no	female	2	1st	no	female	25	1st
no	male	30	1st	yes	female	29	1st
no	female	25	1st	no	male	30	1st

Try arrange(titanic_survival, desc(age))

select() columns

Pick variables by their names

select(titanic survival, survived, age)

survived	sex	age	passengerClass	survived
yes	female	29	1st	yes
yes	male	1	1st	yes
no	female	2	1st	no
no	male	30	1st	no
no	female	25	1st	no

GEO 812 | Peter Ranacher | September 2019

age

29

1

2

30

25

The pipe operator %>%

take the value of that which is to the left pass it to the right as an argument

First select then filter

select(titanic_survival, survived, passengerClass) %>%

filter(passengerClass=="2nd")

mutate() the data

Combine existing variables to create new ones

mutate(msleep, rem_ratio = sleep_rem / sleep_total)

name	 sleep_total	sleep_rem
Owl monkey	 17	1.8
Cow	 4	0.7
Dog	 10.1	2.9

name	 sleep_total	sleep_rem	rem_ratio
Owl monkey	 17	1.8	0.106
Cow	 4	0.7	0.175
Dog	 10.1	2.9	0.287

summarize() the data

Collapse a tibble into a single row

summarise(titanic_survival, mean_age = mean(age, na.rm = TRUE))

survived	sex	age	passengerClass	
yes	female	29	1st	
yes	male	1	1st	
no	female	2	1st	mean_age
no	male	30	1st	29.9
no	female	25	1st	

Why does the following code return NA?
summarise(titanic_survival, mean_age = mean(age))

What does the argument na.rm do? Check ?mean to find out!

summarize() the data and group_by()

Group the data by a variable and then collapse

group_by(titanic_survival, passengerClass) %>%
summarise(mean age = mean(age, na.rm = TRUE))

survived	sex	age	passengerClass
yes	female	29	1st
yes	male	1	1st
no	female	2	1st
no	male	30	1st
no	female	25	1st

passengerClass	mean_age
1st	39.2
2nd	29.5
3rd	24.8

2

Useful summary functions

- Measures of location

mean(x), median(x)

- Measures of spread

sd(x), IQR(x), mad(x)

- Measures of rank

```
min(x), quantile(x, 0.95), max(x)
```

- Measures of position

first(x), nth(x, 2), last(x)

- Counts and proportions of logical values

 $n(), n_distinct(x), sum(x>10)$

Why does $n\ (\)\;$ not have an argument? Use the help function to find out!

Transform and plot in one go using pipes!

Exercise 2

1. What does sins in the following code do? And what is c ()?

filter(titanic survival, passengerClass %in% (c("2nd","3rd")))

How could you rewrite this code using logical operators instead of <code>%in%</code> ?

- 2. Plot the REM ratio (sleep_rem / sleep_total) against the body weight, but only for omnivores between 5 and 1000 kilograms. What do you observe?
- 3. Run the following code:

```
group_by(msleep, vore) %>%
    summarise(mean brainwt = mean(brainwt, na.rm = TRUE))
```

Why does it still return a value for NA even though we set na.rm = TRUE? Change the code such that NA does not appear in the output.

Revisiting the learning objectives

You are able to

- perform basic operations in R
- visualize data
- transform and explore data

We leave the tidyverse for the moment and head off to the jungle, that is R!